Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

A mathematical model of diffusional shunting of oxygen from arteries to veins in the kidney

Gardiner, B.S., Smith, D.W., O'Connor, P.M. and Evans, R.G. (2011) A mathematical model of diffusional shunting of oxygen from arteries to veins in the kidney. AJP: Renal Physiology, 300 (6). F1339-F1352.

Link to Published Version: http://dx.doi.org/10.1152/ajprenal.00544.2010
*Subscription may be required

Abstract

To understand how arterial-to-venous (AV) oxygen shunting influences kidney oxygenation, a mathematical model of oxygen transport in the renal cortex was created. The model consists of a multiscale hierarchy of 11 countercurrent systems representing the various branch levels of the cortical vasculature. At each level, equations describing the reactive-advection-diffusion of oxygen are solved. Factors critical in renal oxygen transport incorporated into the model include the parallel geometry of arteries and veins and their respective sizes, variation in blood velocity in each vessel, oxygen transport (along the vessels, between the vessels and between vessel and parenchyma), nonlinear binding of oxygen to hemoglobin, and the consumption of oxygen by renal tissue. The model is calibrated using published measurements of cortical vascular geometry and microvascular Po2. The model predicts that AV oxygen shunting is quantitatively significant and estimates how much kidney V̇o2 must change, in the face of altered renal blood flow, to maintain cortical tissue Po2 at a stable level. It is demonstrated that oxygen shunting increases as renal V̇o2 or arterial Po2 increases. Oxygen shunting also increases as renal blood flow is reduced within the physiological range or during mild hemodilution. In severe ischemia or anemia, or when kidney V̇o2 increases, AV oxygen shunting in proximal vascular elements may reduce the oxygen content of blood destined for the medullary circulation, thereby exacerbating the development of tissue hypoxia. That is, cortical ischemia could cause medullary hypoxia even when medullary perfusion is maintained. Cortical AV oxygen shunting limits the change in oxygen delivery to cortical tissue and stabilizes tissue Po2 when arterial Po2 changes, but renders the cortex and perhaps also the medulla susceptible to hypoxia when oxygen delivery falls or consumption increases.

Item Type: Journal Article
Publisher: American Physiological Society
Copyright: © 2011 the American Physiological Society
URI: http://researchrepository.murdoch.edu.au/id/eprint/34025
Item Control Page Item Control Page