Elastic reflection symmetry based shape descriptors
Kurtek, S., Shen, M. and Laga, H.ORCID: 0000-0002-4758-7510
(2014)
Elastic reflection symmetry based shape descriptors.
In: IEEE Winter Conference on Applications of Computer Vision (WACV) 2014, 24 - 26 March 2014, Sheraton Steamboat Springs, Colorado
*Subscription may be required
Abstract
Reflection symmetry is an important feature of an object. Main goals in symmetry analysis include quantifying the amount of asymmetry in an object and finding the nearest symmetric object to a given asymmetric one. Samir et al. [19] achieved these goals using a shape distance between representations of curves termed square-root velocity functions. We extend their work by defining shape descriptors based on this representation. The descriptors are based on asymmetry measures computed for a set of reflections of a curve and are invariant to all shape preserving transformations (translation, scale, rotation and re-parameterization). We utilize these descriptors for retrieval of shapes in the Flavia leaf database and a subset of a handwritten digit dataset. We show that we outperform the commonly used angle function and other state of the art descriptors.
Item Type: | Conference Paper |
---|---|
URI: | http://researchrepository.murdoch.edu.au/id/eprint/33558 |
![]() |
Item Control Page |