Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Robust GCV choice of the regularization parameter for correlated data

Lukas, M.A. (2010) Robust GCV choice of the regularization parameter for correlated data. The Journal of integral equations and applications, 22 (3). pp. 519-547.

PDF - Authors' Version
Download (314kB)
Link to Published Version:
*Subscription may be required


We consider Tikhonov regularization of linear inverse problems with discrete noisy data containing correlated errors. Generalized cross-validation (GCV) is a prominent parameter choice method, but it is known to perform poorly if the sample size n is small or if the errors are correlated, sometimes giving the extreme value 0. We explain why this can occur and show that the robust GCV methods perform better. In particular, it is shown that, for any data set, there is a value of the robustness parameter below which the strong robust GCV method (R(1)GCV) will not choose the value 0. We also show that, if the errors are correlated with a certain covariance model, then, for a range of values of the unknown correlation parameter, the "expected" R(1)GCV estimate has a near optimal rate as a n -> infinity. Numerical results for the problem of second derivative estimation are consistent with the theoretical results and show that R(1)GCV gives reliable and accurate estimates.

Item Type: Journal Article
Murdoch Affiliation(s): School of Chemical and Mathematical Science
Publisher: Rocky Mountain Mathematics Consortium
Copyright: (c) Rocky Mountain Mathematics Consortium
Item Control Page Item Control Page


Downloads per month over past year