Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Performance of bycatch reduction devices varies for chondrichthyan, reptile, and cetacean mitigation in demersal fish trawls: assimilating subsurface interactions and unaccounted mortality

Wakefield, C.B., Santana-Garcon, J., Dorman, S.R., Blight, S., Denham, A., Wakeford, J., Molony, B.W. and Newman, S.J. (2017) Performance of bycatch reduction devices varies for chondrichthyan, reptile, and cetacean mitigation in demersal fish trawls: assimilating subsurface interactions and unaccounted mortality. ICES Journal of Marine Science: Journal du Conseil, 74 (1). pp. 343-358.

Link to Published Version: http://dx.doi.org/10.1093/icesjms/fsw143
*Subscription may be required

Abstract

To improve bycatch mitigation of chondrichthyans, reptiles and cetaceans for a tropical demersal fish-trawl fishery, species-specific responses to bycatch reduction devices (BRDs) were investigated using both in situ subsurface and onboard observations. There are few, if any, studies that have determined mitigation performances of BRDs from subsurface interactions for these species, as most are rarely encountered and thus require substantial levels of observer coverage for robust assessments. This study combined in-net and onboard (774 day trawls and 1320 day trawl hours of subsurface observer coverage) electronic monitoring on all fish-trawl vessels (n = 3) to compare bycatch mitigation performances among nine megafauna groups, based on escape rates and interaction durations for three BRDs over 6 months (June to December 2012). Overall, 26.9% of day trawls had no megafauna interactions and 38.3% of the 1826 interactions escaped, with most in rapid time (91.4% in ≤ 5 min). The upward inclined exclusion grid significantly improved the escape proportions for most chondrichthyans by 20–30%. All BRDs were highly effective in reducing reptile (turtles and seasnakes) bycatch, but irrelevant for the few sawfish (n = 13) that readily entangled in the anterior of the net. Cetacean (bottlenose dolphins only) interactions with BRDs were very rare (n = 7) despite high levels of attendance and depredation during trawling. Loss of targeted teleosts through the BRD hatch was rare (1.3% of day trawls). This relatively cost-effective method of electronic monitoring achieved very high levels of subsurface observer coverage (60% of day trawls or 56% of day trawl hours), and provided evidence that the subsurface expulsion of megafauna in poor condition is negligible. Furthermore, this study provides species-specific improvements toward bycatch mitigation strategies for demersal fish trawling.

Item Type: Journal Article
Publisher: Oxford University Press
Copyright: © International Council for the Exploration of the Sea 2016.
URI: http://researchrepository.murdoch.edu.au/id/eprint/32862
Item Control Page Item Control Page