Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Colour at edges and colour spreading in McCollough effects

Broerse, J., Vladusich, T. and O'Shea, R.P. (1999) Colour at edges and colour spreading in McCollough effects. Vision Research, 39 (7). pp. 1305-1320.

Free to read:
*No subscription required


Broerse and O’Shea [(1995) Vision Research, 35, 207–226] proposed that the subjective colours in McCollough effects (MEs) consist of two components: edge colours appearing along the edges of contours, and spread colours radiating from edge colours into adjacent uncontoured regions of test patterns. This proposal was examined in five experiments. First, we demonstrated that fine coloured lines located immediately adjacent to the edges of otherwise achromatic square-wave gratings (i.e. colour-fringed gratings) are sufficient to induce MEs comparable in strength to MEs induced with desaturated versions of traditional uniformly-coloured gratings (Experiments 1 & 2). We then quantified edge and spread colours while varying light/dark duty cycles (white-bar width) in gratings with colour-fringed edges (Experiment 3), uniformly-coloured gratings (Experiment 4), and in achromatic gratings tinged with ME colours after adaptation to colour-fringed gratings (Experiment 5). Whereas the perceived magnitude of edge colours remained constant in all cases, spread colours remained constant only for uniformly-coloured gratings. For both MEs and gratings with colour-fringed edges, spread colours decreased as a function of increasing duty cycle, confirming that conventional MEs may be simulated by gratings with colour-fringed edges. We propose that edge colours arise as a consequence of neural operations correcting for the eye’s chromatic aberration, while spread colours reveal a neural filling-in process operating to achieve colour constancy. In seeking to implement these suggestions, we present a putative framework based on the receptive-field properties of single cells described in contemporary neurophysiological investigations of colour.

Item Type: Journal Article
Murdoch Affiliation(s): School of Psychology and Exercise Science
Publisher: Elsevier Ltd
Copyright: © 1999 Elsevier Science Ltd.
Item Control Page Item Control Page