Computational study for the second-stage cracking of the pyrolysis of ethylamine: Decomposition of methanimine, ethenamine, and ethanimine
Almatarneh, M.H., Barhoumi, L., Al-Tayyem, B., Abu-Saleh, A.A-A.A., AL-A’qarbeh, M.M., Abuorabi, F., AlShamaileh, E., Altarawneh, M.ORCID: 0000-0002-2832-3886 and Marashdeh, A.
(2016)
Computational study for the second-stage cracking of the pyrolysis of ethylamine: Decomposition of methanimine, ethenamine, and ethanimine.
Computational and Theoretical Chemistry, 1075
.
pp. 9-17.
Available under License Creative Commons Attribution Non-commercial No Derivatives.
Download (1MB)
*Subscription may be required
Abstract
The mechanism that accounts for the observed experimental activation energy for the decomposition of ethylamine (EA) is still unknown. This paper reports the first detailed study of possible mechanisms for the pyrolysis of second-stage cracking product of ethylamine: the decomposition reaction of methanimine, ethanimine, and aminoethylene. Investigated reactions characterize either H2 elimination or 1,3-proton shift. These pathways result in the removal of H2, CH4, and NH3; and the formation of hydrogen cyanide, acetylene, acetonitrile, ethynamine, and ketenimine. The IRC analysis was carried out for all transition state structures to obtain the complete reaction pathways. The stationary points were fully optimized at B3LYP and MP2 levels of theory using the 6-31G(d), 6-31G(2df,p), and 6-31++G(3df,3dp) basis sets. Based on comparing energetic requirements, we find 1,3-proton shift is the most probable pathway for the decomposition of ethanimine. The decomposition reaction of ethenamine was the most plausible reaction with an activation energy of 297 kJ mol-1 calculated at the composite method of G4MP2.
Item Type: | Journal Article |
---|---|
Murdoch Affiliation(s): | School of Engineering and Information Technology |
Publisher: | Elsevier BV |
Copyright: | © 2015 Elsevier B.V. |
URI: | http://researchrepository.murdoch.edu.au/id/eprint/29212 |
![]() |
Item Control Page |
Downloads
Downloads per month over past year