Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Dissociative adsorption of molecular oxygen on the Cu(001) surface: a density functional theory study

Suleiman, I.A., Radny, M.W., Gladys, M.J., Smith, P.V., Mackie, J.C., Kennedy, E.M. and Dlugogorski, B.Z. (2009) Dissociative adsorption of molecular oxygen on the Cu(001) surface: a density functional theory study. In: Proceedings of the Australian Combustion Symposium, 2 - 4 December, Brisbane, Qld, Australia pp. 103-106.

[img]
Preview
PDF - Published Version
Download (795kB)

Abstract

The presence of atomic oxygen on catalytic surfaces is essential for initiating the oxidation of hydrogen chloride to produce chlorine via the so-called Deacon process. This process provides molecular chlorine for the formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F) in combustion. In this paper, the dissociative adsorption of molecular oxygen on the Cu(001) surface has been studied using density functional theory. A periodic p(3X2) 4 layer slab was adopted to simulate the adsorption of both molecular and atomic oxygen at a number of adsorption sites. We have found that a bridge-bridge configuration is the most stable structure on Cu(001) with the O₂ molecule adsorbed horizontally. The activation barrier for the dissociative adsorption of O₂ resulting from this configuration was calculated to be 5.1 kcal/mol, with an equivalent transition temperature of ~66 K. This is in good agreement with the experimental value of 40 K obtained under ultra high vacuum conditions. We have also found that a less energetically favourable, vertically oriented, physisorbed structure leads to an almost negligible reaction barrier for the dissociative adsorption of O₂ on Cu(001) (1.5 kcal/mol), with an equivalent transition temperature of ~20 K.

Item Type: Conference Paper
URI: http://researchrepository.murdoch.edu.au/id/eprint/28889
Item Control Page Item Control Page

Downloads

Downloads per month over past year