INTERACTIVE EFFECTS OF WHEAT PHOSPHORUS CONTENT AND ENZYMES ON MINERAL DIGESTIBILITY IN WEANER PIGS

J.C. Kim, B.P. Mullan* and J.R. Pluske, P.H. Simmins**

School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA 6150. *Western Australian Department of Agriculture, Locked Bag No. 4, Bentley Delivery Centre, WA 6983. ** Danisco Animal Nutrition, P.O. Box 777, Marlborough, Wiltshire, SN8 1XN, UK.

About 70% of total phosphorus (P) and 60% of calcium (Ca) are bound to phytate in wheat (Kim *et al.* 2002; Frolich and Asp, 1985), limiting the amount of P and Ca that is digestible in the gastrointestinal tract. The addition of Ca and P to pig diets is therefore required. Phytic acids are present in the aleurone layers of wheat, indicating a possible association of phytic acids with non-starch polysaccharides (NSP) (Frolich and Asp, 1985) and supplements of phytase and NSP-degrading enzyme may therefore increase P and Ca digestibility in weanling pigs fed a wheat-based diet. The hypotheses tested were 1) wheat P-content will influence mineral digestibility; 2) individual supplementation of xylanase and phytase will have synergistic effects on P and Ca digestibilities in weanling pigs fed wheats that differ in their P content.

A 2 x 4 factorial experiment was done with the respective factors being wheat (Low-P: 223 mg and High-P: 335 mg/100 g) and enzyme supplementation (no enzyme, xylanase, phytase, and xylanase plus phytase). The enzymes were xylanase and phytase (Porzyme 9300[®], minimum activity 4000 U/g endo-1,4- β -xylanase; Phyzyme XP 5000G[®], minimum activity 4100 U/g phytase, Danisco Animal Nutrition, UK). The two pre-selected wheats were heat treated before diet manufacture. Eighty male weaner pigs (Landrace x Large White, 5.4 ± 0.07 kg) were fed an identical pre-trial diet for one week and received their respective experimental diet for three weeks, after random allocation based on liveweight. All diets contained 650 g/kg wheat and similar concentrations of calculated digestible energy (14.2 MJ/kg), available lysine (0.78 g/MJ DE), available P (0.32%) and Ca:P (1.46:1). Titanium dioxide (TiO₂) was added as an inert marker. Faecal 'grab' samples were collected for three consecutive days from day 14. Data were analysed using the ANOVA procedure of Statview.

Wheat P-content had no significant effect on mineral digestibility (Table 1). Xylanase improved P digestibility in the High-P wheat but not in the Low-P wheat. Phytase improved P digestibility alone in the Low-P wheat but improved the digestibility of P and Ca in the High-P wheat. However, interactions occurred between the wheat P content and enzyme supplementation, so that xylanase plus phytase did not improve P and Ca digestibility in the Low-P wheat, but did improve P (P<0.001) and Ca (P<0.01) digestibility in the High-P wheat.

Table 1. Effects of wheat P content (W) and enzyme supplementation (E) on digestibi	lity coefficient
(DC) of P and Ca (%) determined with 42-day-old male weaner pigs ¹ .	

< /	· · · · · ·			v						the second s		
Wheat	Low-P wheat				High-P wheat			Pooled	Significance ²			
Enzyme	No	Xyl	Phy	X+P	No	Xyl	Phy	X+P	SEM	W	E	WxE
DC_P	43.2 ^a	45.9 ^a	56.0 ^b	45.8 ^a	36.8 ^a	42.8 ^b	51.9°	53.2°	7.82	0.21	***	***
DC_{Ca}	59.1 ^{ab}	59.3 ^{ab}	61.9 ^b	55.7 ^a	54.8 ^a	59.2ª	67.6 ^b	63.2 ^b	7.08	0.12	**	*

¹Mean digestibility determined from 10 pigs per treatment combination. Values with different superscripts within a row for each wheat are significantly different (P<0.05). ²*P<0.05, **P<0.01, ***P<0.001.

These data indicate that the combined use of xylanase and phytase for P and Ca digestibility might be effective only in wheats having a higher total P-content, and therefore a higher phytate-P level (Kim *et al.* 2002). Phytase alone can enhance the total tract digestibility of P, independent of wheat P-content.

References

FROLICH, W. and ASP, N.G. (1985). Cereal Chemistry. 62:238-242.

KIM, J.C., MULLAN, B.P., SELLE, P.H. and PLUSKE, J.R. (2002). Australian Journal of Agricultural Research. 53:1361-1366.