A note on self-maximal numbers

Amy Glen

Murdoch University, Perth, Western Australia

Given an infinite word \boldsymbol{x} over an alphabet \mathcal{A} , a letter b occurring in \boldsymbol{x} , and a total order \leq on \mathcal{A} , the smallest word (resp. greatest word) with respect to \leq starting with b in the shift orbit closure of \boldsymbol{x} is called a minimal word (resp. maximal word) of \boldsymbol{x} . By a result of Parry (1960), it is known that an infinite word \boldsymbol{s} over the alphabet $\{0,1,\ldots,\lfloor\beta\rfloor\}$ forms the digits of a greedy β -expansion of 1 for some (non-integer) real number $\beta > 1$ if and only if \boldsymbol{s} is a maximal word (with respect to the natural order on its alphabet) beginning with $\lfloor\beta\rfloor$ (the maximal letter in its alphabet), in which case β is unique. We call such numbers β self-maximal. Using combinatorial properties of the maximal words of certain classes of infinite words, we consider the problem of determining whether the corresponding self-maximal numbers are transcendental.

Murdoch University, Maths & Stats, School of Engineering & IT, 90 South St, Murdoch, WA, 6150 amy.glen@gmail.com