Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Ab initio procedure for aqueous-phase pK a calculation: The acidity of nitrous acid

da Silva, G., Kennedy, E.M. and Dlugogorski, B.Z. (2006) Ab initio procedure for aqueous-phase pK a calculation: The acidity of nitrous acid. The Journal of Physical Chemistry A, 110 (39). pp. 11371-11376.

Link to Published Version:
*Subscription may be required


We present an ab initio procedure for accurately calculating aqueous-phase pK a values and apply it to study the acidity of nitrous acid (HNO 2, or HONO). The aqueous-phase pK a of nitrous acid was obtained from calculated gas-phase acidities and solvation free energies via a thermodynamic cycle and the solvation model chemistry of Barone et al. (J. Chem. Phys. 1997, 107, 3210). Solvation free energies were calculated at the HF/6-31G(d) level using the dielectric-polarizable continuum and the integral equation formalism-polarizable continuum solvent models (D-PCM and IEF-PCM, respectively), with the D-PCM model yielding the most accurate pK a values. For HF free energies of solvation, significant improvements in accuracy could be made by moving to the larger 6-311++G(3df,3pd) and aug-cc-pVQZ basis sets. Solvation free energies were also calculated using the density functional theory (DFT) methods B3LYP, TPSS, PBE0, B1B95, VSXC, B98 and O3LYP, with the most accurate methods being TPSS and VSXC, which provided average errors of less than 0.11 pK a units. Solvation free energies calculated with the different DFT methods were relatively insensitive to the basis set used. Our theoretical calculations are compared with experimental results obtained using stopped flow spectrophotometry. The pK a of nitrous acid was measured as 3.16 at 25°C, and the enthalpy and entropy of nitrous acid dissociation were calculated from measurements as 6.7 kJ mol -1 and -38.4 J mol -1 K -1, respectively, between 25 and 45°C. The UV/visible absorption spectra of the nitrite ion and nitrous acid were also examined, and molar extinction coefficients were obtained for each.

Item Type: Journal Article
Publisher: American Chemical Society
Copyright: © 2006 American Chemical Society
Item Control Page Item Control Page