Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Selecting feature grouping and decision tree to improve results from the Learning Object Management Model (LOMM)

Wanapu, S., Fung, C.C.ORCID: 0000-0001-5182-3558, Kajornrit, J., Niwattanakul, S. and Chamnongsri, N. (2014) Selecting feature grouping and decision tree to improve results from the Learning Object Management Model (LOMM). Journal of Convergence Information Technology, 9 (3). pp. 131-142.

Free to read:
*No subscription required


Recommendation systems, also known as intelligent decision support systems, have been used to support and strengthen the decision making in various areas including education. In order to establish efficient recommendation systems for educational purposes, several specific problems have to be addressed. One such problem is the weak relationship between input features, which causes performance of decision trees to deteriorate. This paper therefore proposes two preprocessing techniques to strengthen the relationships of input features for decision trees by using ontology and Apriori algorithm. Ontology-based feature grouping is used to combine related input features and to derive a set of new inputs. Apriori-based feature adding is used to find the groups of strong input features and add them as the new derived inputs. The proposed methods have been evaluated using data collected from schools in Nakhon Ratchasima province, Thailand. The experimental results suggested that the proposed methods have improved the accuracy of decision trees and the performance of recommendation systems in this test case. Furthermore, this paper also conducted experiments to select the appropriate input features and types of the decision tree specific to the dataset for further development.

Item Type: Journal Article
Murdoch Affiliation(s): School of Engineering and Information Technology
Publisher: Advanced Institute of Convergence Information Technology
Item Control Page Item Control Page