Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Genetic diversity of rhizobia associated with indigenous legumes in different regions of Flanders (Belgium)

De Meyer, S.E., Van Hoorde, K., Vekeman, B., Braeckman, T. and Willems, A. (2011) Genetic diversity of rhizobia associated with indigenous legumes in different regions of Flanders (Belgium). Soil Biology and Biochemistry, 43 (12). pp. 2384-2396.

Link to Published Version:
*Subscription may be required


We investigated the diversity of rhizobia isolated from different indigenous legumes in Flanders (Belgium). A total of 3810 bacterial strains were analysed originating from 43 plant species. Based on rep-PCR clustering, 16S rRNA gene and recA gene sequence analysis, these isolates belonged to Bradyrhizobium, Ensifer (Sinorhizobium), Mesorhizobium and Rhizobium. Of the genera encountered, Rhizobium was the most abundant (62%) and especially the species Rhizobium leguminosarum, followed by Ensifer (19%), Bradyrhizobium (14%) and finally Mesorhizobium (5%). For two rep-clusters only low similarity values with other genera were found for both the 16S rRNA and recA genes, suggesting that these may represent a new genus with close relationship to Rhodopseudomonas and Bradyrhizobium. Primers for the symbiotic genes nodC and nifH were optimized and a phylogenetic sequence analysis revealed the presence of different symbiovars including genistearum, glycinearum, loti, meliloti, officinalis, trifolii and viciae. Moreover, three new nodC types were assigned to strains originating from Ononis, Robinia and Wisteria, respectively. Discriminant and MANOVA analysis confirmed the correlation of symbiosis genes with certain bacterial genera and less with the host plant. Multiple symbiovars can be present within the same host plant, suggesting the promiscuity of these plants. Moreover, the ecoregion did not contribute to the separation of the bacterial endosymbionts. Our results reveal a large diversity of rhizobia associated with indigenous legumes in Flanders. Most of the legumes harboured more than one rhizobial endosymbiont in their root nodules indicating the importance of including sufficient isolates per plant in diversity studies.

Item Type: Journal Article
Publisher: Elsevier BV
Copyright: © 2011 Elsevier Ltd.
Item Control Page Item Control Page