Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Cryptosporidium oocysts in faecal samples

Yang, R.ORCID: 0000-0003-2563-2015, Paparini, A.ORCID: 0000-0002-1105-5184, Monis, P. and Ryan, U.ORCID: 0000-0003-2710-9324 (2014) Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Cryptosporidium oocysts in faecal samples. International Journal for Parasitology, 44 (14). pp. 1105-1113.

PDF - Authors' Version
Download (774kB)
Link to Published Version:
*Subscription may be required


Clinical microbiology laboratories rely on quantitative PCR for its speed, sensitivity, specificity and ease-of-use. However, quantitative PCR quantitation requires the use of a standard curve or normalisation to reference genes. Droplet digital PCR provides absolute quantitation without the need for calibration curves. A comparison between droplet digital PCR and quantitative PCR-based analyses was conducted for the enteric parasite Cryptosporidium, which is an important cause of gastritis in both humans and animals. Two loci were analysed (18S rRNA and actin) using a range of Cryptosporidium DNA templates, including recombinant plasmids, purified haemocytometer-counted oocysts, commercial flow cytometry-counted oocysts and faecal DNA samples from sheep, cattle and humans. Each method was evaluated for linearity, precision, limit of detection and cost. Across the same range of detection, both methods showed a high degree of linearity and positive correlation for standards (R2≥0.999) and faecal samples (R2≥0.9750). The precision of droplet digital PCR, as measured by mean Relative Standard Deviation (RSD;%), was consistently better compared with quantitative PCR, particularly for the 18S rRNA locus, but was poorer as DNA concentration decreased. The quantitative detection of quantitative PCR was unaffected by DNA concentration, but droplet digital PCR quantitative PCR was less affected by the presence of inhibitors, compared with quantitative PCR. For most templates analysed including Cryptosporidium-positive faecal DNA, the template copy numbers, as determined by droplet digital PCR, were consistently lower than by quantitative PCR. However, the quantitations obtained by quantitative PCR are dependent on the accuracy of the standard curve and when the quantitative PCR data were corrected for pipetting and DNA losses (as determined by droplet digital PCR), then the sensitivity of both methods was comparable. A cost analysis based on 96 samples revealed that the overall cost (consumables and labour) of droplet digital PCR was two times higher than quantitative PCR. Using droplet digital PCR to precisely quantify standard dilutions used for high-throughput and cost-effective amplifications by quantitative PCR would be one way to combine the advantages of the two technologies.

Item Type: Journal Article
Murdoch Affiliation(s): School of Veterinary and Life Sciences
Publisher: Elsevier BV
Copyright: © 2014 Australian Society for Parasitology Inc.
Item Control Page Item Control Page


Downloads per month over past year