Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Characterization of the multigene family TaHKT 2;1 in bread wheat and the role of gene members in plant Na+ and K+ status

Ariyarathna, H.A.C.K., Ul-Haq, T., Colmer, T.D. and Francki, M.G. (2014) Characterization of the multigene family TaHKT 2;1 in bread wheat and the role of gene members in plant Na+ and K+ status. BMC Plant Biology, 14 (1).

[img]
Preview
PDF - Published Version
Download (2MB)
Free to read: http://dx.doi.org/10.1186/1471-2229-14-159
*No subscription required

Abstract

Background
A member of the TaHKT2;1 multigene family was previously identified as a Na+ transporter with a possible role in root Na+ uptake. In the present study, the existing full-length cDNA of this member was used as a basis to query the International Wheat Genome Survey Sequence to identify all members of the TaHKT2;1 family. Individual TaHKT2;1 genes were subsequently studied for gene and predicted protein structures, promoter variability, tissue expression and their role in Na+ and K+ status of wheat.

Results
Six TaHKT2;1 genes were characterized which included four functional genes (TaHKT2;1 7AL-1, TaHKT2;1 7BL-1, TaHKT2;1 7BL-2 and TaHKT2;1 7DL-1) and two pseudogenes (TaHKT2;1 7AL-2 and TaHKT2;1 7AL-3), on chromosomes 7A, 7B and 7D of hexaploid wheat. Variability in protein domains for cation specificity and in cis-regulatory elements for salt response in gene promoters, were identified amongst the functional TaHKT2;1 members. The functional genes were expressed under low and high NaCl conditions in roots and leaf sheaths, but were down regulated in leaf blades. Alternative splicing events were evident in TaHKT2;1 7AL-1. Aneuploid lines null for each functional gene were grown in high NaCl nutrient solution culture to identify potential role of each TaHKT2;1 member. Aneuploid lines null for TaHKT2;1 7AL-1, TaHKT2;1 7BL-1 and TaHKT2;1 7BL-2 showed no difference in Na+ concentration between Chinese Spring except for higher Na+ in sheaths. The same aneuploid lines had lower K+ in roots, sheath and youngest fully expanded leaf but only under high (200 mM) NaCl in the external solution. There was no difference in Na+ or K+ concentration for any treatment between aneuploid line null for the TaHKT2;1 7DL-1 gene and Chinese Spring.

Conclusions
TaHKT2;1 is a complex family consisting of pseudogenes and functional members. TaHKT2;1 genes do not have an apparent role in controlling root Na+ uptake in bread wheat seedlings under experimental conditions in this study, contrary to existing hypotheses. However, TaHKT2;1 genes or, indeed other genes in the same chromosome region on 7AL, are candidates that may control Na+ transport from root to sheath and regulate K+ levels in different plant tissues.

Item Type: Journal Article
Murdoch Affiliation(s): Western Australian State Agricultural Biotechnology Centre
Publisher: BioMed Central
Copyright: © 2014 Ariyarathna et al.
URI: http://researchrepository.murdoch.edu.au/id/eprint/22930
Item Control Page Item Control Page

Downloads

Downloads per month over past year