Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Computational study of the oxidation and decomposition of dibenzofuran under atmospheric conditions

Altarawneh, M.ORCID: 0000-0002-2832-3886, Kennedy, E.M., Dlugogorski, B.Z. and Mackie, J.C. (2008) Computational study of the oxidation and decomposition of dibenzofuran under atmospheric conditions. The Journal of Physical Chemistry A, 112 (30). pp. 6960-6967.

Link to Published Version:
*Subscription may be required


The atmospheric degradation of dibenzofuran (DF) initiated by OH addition has been studied by using density functional theory (B3LYP method). Site Cl in DF is predicted to be the favored site for OH addition, with a branching ratio of 0.61 to produce a DF-OH(1) adduct. The calculated reaction rate constant for OH addition to DF has been used to predict the atmospheric lifetime of DF to be 0.45 day. Three different modes of attack of O2 (3Σ g) on DF-OH(1) have been examined. Abstraction of hydrogen gem to OH in DF-OH(1) by O2 (3Σg) (producing 1-dibenzofuranol I) and dioxygen addition in the three radical sites in cis and trans orientation (relative to the ispo-added OH) of the π-delocalized electron system of DF-OH(1) are feasible under atmospheric conditions. The free energy of activation (at 298.15 K) for the formation of 1-dibenzofuranol is 15.1 kcal/mol with a free energy change of -36.3 kcal/mol, while the formation of DF-OH(1)-O2 adducts are endergonic by 9.2-21.8 kcal/mol with a 16.3-23.6 kcal/mol free energy of activation. On the basis of the calculated reaction rate constants, the formation of 1-dibenzofuranol is more important than the formation of DF-OH-O2 adducts. The results presented here are a first attempt to gain a better understanding of the atmospheric oxidation of dioxin-like compounds on a precise molecular basis.

Item Type: Journal Article
Publisher: American Chemical Society
Copyright: © 2008 American Chemical Society.
Item Control Page Item Control Page