Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Temporal and spatial dynamics of trypanosomes infecting the brush-tailed bettong (Bettongia penicillata): a cautionary note of disease-induced population decline

Thompson, C.K., Wayne, A.F., Godfrey, S.S. and Thompson, R.C.A. (2014) Temporal and spatial dynamics of trypanosomes infecting the brush-tailed bettong (Bettongia penicillata): a cautionary note of disease-induced population decline. Parasites & Vectors, 7 (1).

PDF - Published Version
Available under License Creative Commons Attribution.

Download (919kB)
Free to read:
*No subscription required


The brush-tailed bettong or woylie (Bettongia penicillata) is on the brink of extinction. Its numbers have declined by 90% since 1999, with their current distribution occupying less than 1% of their former Australian range. Woylies are known to be infected with three different trypanosomes (Trypanosoma vegrandis, Trypanosoma copemani and Trypanosoma sp. H25) and two different strains of T. copemani that vary in virulence. However, the role that these haemoparasites have played during the recent decline of their host is unclear and is part of ongoing investigation.

Woylies were sampled from five locations in southern Western Australia, including two neighbouring indigenous populations, two enclosed (fenced) populations and a captive colony. PCR was used to individually identify the three different trypanosomes from blood and tissues of the host, and to investigate the temporal and spatial dynamics of trypanosome infections.

The spatial pattern of trypanosome infection varied among the five study sites, with a greater proportion of woylies from the Perup indigenous population being infected with T. copemani than from the neighbouring Kingston indigenous population. For an established infection, T. copemani detection was temporally inconsistent. The more virulent strain of T. copemani appeared to regress at a faster rate than the less virulent strain, with the infection possibly transitioning from the acute to chronic phase. Interspecific competition may also exist between T. copemani and T. vegrandis, where an existing T. vegrandis infection may moderate the sequential establishment of the more virulent T. copemani.

In this study, we provide a possible temporal connection implicating T. copemani as the disease agent linked with the recent decline of the Kingston indigenous woylie population within the Upper Warren region of Western Australia. The chronic association of trypanosomes with the internal organs of its host may be potentially pathogenic and adversely affect their long term fitness and coordination, making the woylie more susceptible to predation.

Item Type: Journal Article
Murdoch Affiliation(s): School of Veterinary and Life Sciences
Publisher: BioMed Central
Copyright: © 2014 Thompson et al
Notes: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.
Item Control Page Item Control Page


Downloads per month over past year