Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn2+ + OH–, Cl–, CO32–, SO42–, and PO43– systems (IUPAC Technical Report)

Powell, K.J., Brown, P.L., Byrne, R.H., Gajda, T., Hefter, G., Leuz, A-K, Sjöberg, S. and Wanner, H. (2013) Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn2+ + OH–, Cl–, CO32–, SO42–, and PO43– systems (IUPAC Technical Report). Pure and Applied Chemistry, 85 (12). pp. 2249-2311.

[img]
Preview
PDF - Published Version
Download (1MB)
Link to Published Version: http://dx.doi.org/10.1351/PAC-REP-13-06-03
*Subscription may be required

Abstract

The numerical modeling of ZnII speciation amongst the environmental inorganic ligands Cl-, OH-, CO3 2-, SO4 2-, and PO4 3-requires reliable values for the relevant stability (formation) constants. This paper compiles and provides a critical review of these constants and related thermodynamic data. It recommends values of log10βp,q,r° valid at Im = 0 mol·kg-1 and 25 °C (298.15 K), and reports the empirical reaction ion interaction coefficients, Δ∈required to calculate log10βp,q,r values at higher ionic strengths using the Brønsted-Guggenheim-Scatchard specific ion interaction theory (SIT). Values for the corresponding reaction enthalpies, ΔrH, are reported where available. There is scope for additional high-quality measurements for the Zn2+ + H+ + CO3 2-system and for the Zn2+ + OH-and Zn2+ + SO4 2-systems at I > 0. In acidic and weakly alkaline fresh water systems (pH <8), in the absence of organic ligands (e.g., humic substances), ZnII speciation is dominated by Zn2+(aq). In this respect, ZnII contrasts with CuII and PbII (the subjects of earlier reviews in this series) for which carbonato-and hydroxido-complex formation become important at pH > 7. The speciation of ZnII is dominated by ZnCO3(aq) only at pH > 8.4. In seawater systems, the speciation at pH = 8.2 is dominated by Zn2+(aq) with ZnCl+, Zn(Cl)2(aq), ZnCO3(aq), and ZnSO4(aq) as minor species. This behaviour contrasts with that for CuII and PbII for which at the pH of seawater in equilibrium with the atmosphere at 25 °C (log10 {[H+]/c°} ≈ 8.2) the MCO3(aq) complex dominates over the MCln (2-n)+ species. The lower stability of the different complexes of ZnII compared with those of CuII, PbII, and CdII is also illustrated by the percentage of uncomplexed M2+ in seawater, which is ca. 55, 3, 2, and 3.3% of [MII]T, respectively.

Item Type: Journal Article
Murdoch Affiliation(s): School of Veterinary and Life Sciences
Publisher: International Union of Pure and Applied Chemistry
Copyright: © 2013 IUPAC.
URI: http://researchrepository.murdoch.edu.au/id/eprint/20321
Item Control Page Item Control Page

Downloads

Downloads per month over past year