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IMPROVING THREE LAYER NEURAL NET CONVERGENCE 

Michael Alder ,  Sok Gek Lim.Pau1 Hadingham and Yianni Attikiouzel 

The  University of Western Australia, Australia 

I N T R O D U C T I O N  

The  mult i - layer  Perceptron [l], t h e  MADALINE [2], 
t h e  commit tee  ne t  [3] and t h e  feed forward networks 
t ra inable  by the  back-propagation algorithm, 141, are 
re lated in ways which a re  not  always en t i re ly  clear.  
I t  is  o n e  aim of t h i s  pape r  t o  make  some  of t h e m  a 
l i t t le clearer. 

T h e  main application of neural networks has  been as 
trainable pat tern classifiers. and that is  how they will 
be  viewed in this paper. In the  first part of this paper 
we inves t iga te  t h e  re la t ionship  between t h r e e  layer  
f e e d  f o r w a r d  b a c k - p r o p a g a t i o n  n e t s  ( u s i n g  t h e  
terminology of [4]) and the  committee net of [3], and 
show tha t  a s imple  modif icat ion to  t h e  algori thm of 
t h e  l a t t e r  makes  t h e m ,  in respec t  of the i r  power t o  
classify da ta  se t s ,  equiva len t .  Two algori thms may, 
however, be equivalent  in power hut  differ greatly in 
their  practicali ty.  In t h e  second part  of t h e  paper  we 
c o n d u c t  s o m e  e x p e r i m e n t s  in o r d e r  t o  d e t e r m i n e  
w h e t h e r  t h e  m o d i f i e d  c o m m i t t e e  a l g o r i t h m  c a n  
c o m p e t e  w i t h  b a c k - p r o p a g a t i o n  in  a v a r i e t y  of 
applications. I t  is  found that the  committee algorithm 
(a) is about  10 t imes as fast in some appl icat ions and 
( b )  i s  much  less p r o n e  t o  g e t t i n g  t r apped  in loca l  
minima. 

T h e  theoret ical  interest  in t h e  paper  s tems from t h e  
e a s e  of analysing t h e  commi t t ee  a lgori thm toge ther  
with t h e  equ iva lence .Thq  expe r imen ta l  i n t e r e s t  is  
tha t  t h i s  me thod  of speed ing  up back-p ropaga t ion  
may  be  used  w i t h  o t h e r  i m p r o v e m e n t s  to  r e d u c e  
training times in sdme applications. 

I n  what fol lows we restrict  attention, without loss of 
g e n e r a l i t y ,  t o  t h e  c a s e  of a b i n a r y  c l a s s i f i c a t i o n  
problem. 

T H E O R E T I C A L  C O N S I D E R A T I O N S  

Terms not defined in this paper are to  be  found in t h e  
r e f e r e n c e s ,  s p e c i f i c a l l y  see [ 3 ]  f o r  d e f i n i t i o n s  of 
terms relating to  committee nets. Briefly, a committee 
ne t  is  a ( t ra inable)  s e t  of k  or ien ted  hype rp lanes  in 
t h e  space each returning a ‘vote’ + I  or - 1 according 
to which side of the  hyperplane a datum is. T h e  votes  
are summed by t h e  ‘output  unit’and compared with a 
threshold of zero if the  number of units is odd.  By 

adding,  if necessary,  a unit  or units remote from t h e  
d a t a  or by g iv ing  a threshold  of 1/2, t h e  case  of an 
e v e n  n u m b e r  o f  u n i t s  c a n  b e  t r e a t e d ,  a s  c a n  
thresholds  other  than zero. 

T h e  first  proposition is t h e  trivial observation, made 
for completeness: 

Proposition. Any binary d a t a  s e t  can be correct ly  
classified by acommirtee net. 

Proof: The  argument is by induction on the  number 
of points of the  data  set. We first observe that if there 
are only two points, one of each category, then the  set 
is l inearly separable and a single unit net will serve.  
N o w  s u p p o s e  t h a t  t h e r e  i s  a l w a y s  a c o r r e c t  
c lass i f ica t ion  of  a d a t a  s e t  hav ing  a to ta l  of r d a t a  
points,  and consider  a dat set  having r+ l  points.  One 
of t h e  poin ts  at  l eas t  must  b e  ex t remal ,  i s .  may be  
separated from a l l  t h e  o thers  by a hyperplane.  T h e  
o t h e r  p o i n t s  may  b e  c o r r e c t l y  c l a s s i f i e d  by a 
commit tee .  Without  loss of general i ty ,  suppose t h e  
new p o i n t  i s  p o s i t i v e  a n d  t h e  c o m m i t t e e  w h i c h  
c lass i f ies  t h e  r e s t  of t h e  d a t a  s e t  would assign it a 
negative value. Then we can insert between the  old r 
p o i n t s  a n d  t h e  e x t r e m a l  p o i n t  s u f f i t i e n t l y  many  
hyperplanes to make the  new point positive. This will 
also add negat ive va lues  to  t h e  r poin ts  which may 
a l te r  t h e  c lass i f ica t ion .  W e  therefore  take  as  many 
hype rp lanes  again which have a l l  t h e  points  on t h e  
pos i t ive  s ide .  T h i s  r e t u r n s  t h e  r poin ts  to  t h e  same 
va lues  they  had before ,  and preserves  t h e  posi t ive 
sign of the  extremal point. 

0 

R e m a r k .  T h e r e  a r e  b e t t e r  ways.  In  par t icu lar  we 
need add only  half t h e  number  of new hyperplanes 
s u g g e s t e d  i n  t h e  a b o v e  a r g u m e n t .  E v e n  s o ,  t h e  
a rgumen t  i s  h a r d l y  cheer ing ,  sugges t ing  as it d o e s  
that the  number of hyperplanes, and hence of hidden 
units, may increase with the size of the  data set. 

Remark .  T h e  3- layer  FFBP net may be regarded as a 
commi t t ee  n e t  with var iable  weights  for t h e  vot ing 
s t rengths  toge ther  with a var iable  threshold .  Again, 
t h e  t h r e s h o l d  is no t  e s s e n t i a l  as  it can be  rep laced  
with a fixed threshold of zero and sufficiently remote 
units added in. Specifically, in R”  with input datum 
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x = ( X , . X ~ . . . . X ~ ) ~  the  3-layer FFBP net  implements  a 
map: 

f(x) = sgn ( bjsgn(Faijxi)) 
J 

where the  a.. are the  weights in the  first hidden layer 
from the  ithlkomponent of the  input to t h e  jth hidden 
unit and the b, are the  weights to the  output unit, and 
t h e  sgn funct ion takes  t h e  value 1 if i ts  argument  i s  
positive, - 1 if i t  is negative and is not defined at zero. 

Suppose that some data  set is correctly classified by  
some such 3- layer  FFBP net. We observe that  s ince 
t h e  da ta  set is f ini te  and f - ' { l )  is open, as  is f - ' ( - I ) ,  
there  is stability under perturbations of the  weights. 
Specifically we may take the  bj to he rational, which 
i s  just as well given the need for using these nets  via 
computer simulations. 

M o r e o v e r ,  i f  a n y  of t h e  c o e f f i c i e n t s  s h o u l d  b e  
negative, then reversing the sign of the corresponding 
ai, weights  will a l low u s  to  reverse  i t s  sign to  s t i l l  
give a solut ion.  And if a weight should  b e  zero,  we 
can simply remove the  unit altogether. Hence we may 
take i t  that the weights are all positive rationals, and 
Fince multiplying throughout by any positive number 
wi l l  p r e s e r v e  t h e  s ign  of t h e  s o l u t i o n ,  w e  m a y  
m u l t i p l y  by  t h e  L e a s t  C o m m o n  M u l t i p l e  of t h e  
d e n o m i n a t o r s  t o  m a k e  t h e  w e i g h t s  a l l  p o s i t i v e  
integers, which we can then regard as multiplicities. 
T h i s  is now a commit tee  net with some of the  uni ts  
replicated by their multiplicities. 

T h e  above argument leaves one with the  impression 
that for any data set that can be classified by a 3-layer 
FFRP net there is a committee net which can classify 
i t ,  h u t  t h e  n u m b e r  of  u n i t s  r e q u i r e d  f o r  t h i s  
e q u i v a l e n t  c o m m i t t e e  c a n  h e  a r b i t r a r i l y  l a r g e .  
Happily. such is not t h e  case.  We proceed to  show 
th i s  by a se r ies  of proposi t ions motivated by some 
examples. 

E x a m p l e .  S u p p o s e  we h a v e  a c o m m i t t e e  w i t h  
multiplicities attached to the units: I shall write: 
(2 ,  11, 19, 2 6 )  t o  ind ica te  tha t  we have  four  u n i t s  

which we may take i t  correctly classify some data  set 
in R" , provided we have  t h e  given mult ipl ic i t ies .  
Al te rna t ive ly ,  we have  2+11+19+26 uni ts  but  on ly  
four of them are distinct hyperplanes. 

I f  n is big enough, then there  will be some region of 
t h e  space having  a count  of 2+11+19+26, and as  we  
m o v e  across  t h e  l a s t  h y p e r p l a n e  we m o v e  i n t o  a 
region having a count of 2+11+19 -26, and so on. Now 
consider the second hyperplane. The  regions on the  

the negative side. Now these numbers when added to  
+ I 1  or -11 are  from t h e  set (-47, -43, -9, - 5 ,  5 ,  9, 43,  
47) .  W e  observe that the  sign of the  result of adding 
11 or subtract ing 11 f rom these numbers  will not  b e  
a l t e r e d  b y  c h a n g i n g  t h e  n u m b e r  1 1  t o  s o m e  
s u f f i c i e n t l y  c l o s e  o t h e r  n u m b e r .  I n  p a r t i c u l a r ,  
choosing any number to  replace 11 which is s t r ic t ly  
between 9 and 43 will not a l ter  any signs; this  is ,  of 
course, that interval of the  values obtained by taking 
s u m s  and d i f fe rences  of t h e  mul t ip l ic i t ies  which  
c o n t a i n s  11. W e  may t h e r e f o r e  rep lace  t h e  g iven  
q u a r t e t  (2 ,11,19,26)  b y  t h e  e q u i v a l e n t  q u a r t e t  
(2,19,19,26) which must  a lso correct ly  classify t h e  
same da ta  set .  Similarly, t h e  26  may be changed to  
any  va lue  be tween 2 and 36 so may also b e  made  
equal t o  19. Finally the 2 may take any value between 
- 19 and  19 in  par t icu lar  may take  t h e  value 0. W e  
therefore have that the  given quartet is equivalent to 
the quartet (0,19,19,19). This  is of course equivalent to 
t h e  q u a r t e t  (0.1.1,l) or t h e  t r i p l e  (1.1.1). I n  o t h e r  
words, t h e  original total of 58 units  can be reduced 
to 3 and stilI classify the same data set. 

E x a m p l e .  S u p p o s e  w e  h a v e  t h r e e  u n i t s  w i t h  
m u l t i p l i c i t i e s  p o s i t i v e  i n t e g e r s  (a,b,c). W e  may,  
without loss of generality, suppose them arranged in 
non-decreasing order and not all the  same. Now if c > 
a+b.  t h e  first two uni ts  cannot  change t h e  sign of a 
region by enough to  compensate  for the  vote  of t h e  
t h i r d  u n i t  a n d  m a y  b e  r e m o v e d ;  t h e  t r i p l e  i s  
equiva len t  t o  a s ing le  uni t  in t h e  t h i r d  loca t ion .  
Alternat ively we may argue that  b l ies  between a - c  
and c-a  and can be put to 0, whereupon a lies between 
- c  and c and can also b e  put t o  0, finally divide (0 .0,~)  
by c. If c <  a+b then b l ies  between c-a  and c+a and 
can be put  equal t o  c, and finally a lies between 0 and 
2c and h e n c e  may a l so  b e  put  t o  c, giving (c,c,c) - 
(1.1.1). Finally,the case where c = a+b is easily seen to 
be reducible  to  a t r iple  (l,l,2) and requires a total of 
fou r  un i t s .  Such  a case  can cer ta in ly  ar ise  f rom a 
3-layer FFBP net, and we observe that in this case we 
need one extra unit in an equivalent committee. 

D e f i n i t i o n .  L e t  a = ( a , , a  2 , . . . a k )  b e  a s e t  o f  
non-negative integers. The  unitary span of the  set IS  

t h e  set  of 2k in tegers  obtained by taking all l inear  
combinations with coefficients in [-I,+l]. a is said to 
be unitarily degenerate iff 0 is in the unitary span. We 
wri te  uspan(a)  for  t h e  set of 2k integers  compris ing 
the  unitary span. 

Def in i t ion .  Let a = (a l  ,... ak) and b = ( b l  .... bk)  be two 
k-  tuples  of non-negat ive integers in non-decreasing 
order. Let w = (w,. ... wk) b e  a unitary vector i.e. each 
w' is e i ther  - 1  or +l .  Then we write a-b iff for every 
unitary w, sgn(w*a) = sgn(w*b) where * denotes  t h e  

J 

usual inner product pos i t ive  s i d e  of i t  may h a v e  va lues  ranging  f rom 
2+11+19+26 to -2+11- 19-26, with similar values for 
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R e m a r k .  C l e a r l y  - i s  an equiva lence  relat ion and 
e q u a l l y  c l e a r l y  i f  t h e  k - t u p l e s  r e p r e s e n t  t h e  
multiplicities of units in the  hidden layer, replacing 
o n e  s e t  of m u l t i p l i c i t i e s  wi th  t h e  o t h e r  wi l l  no t  
c h a n g e  t h e  clasi f icat ion of t h e  n e t .  If a k - t u p l e  is 
d e g e n e r a t e  t h e n  any  e q u i v a l e n t  k - t u p l e  i s  a l s o  
degenerate. 

D e f i n i t i o n .  A k- tuple  of non-negat ive  in tegers  in 
n o n - d e c r e a s i n g  o r d e r  w i l l  b e  r e f e r r e d  t o  a s  a 
multiplicity-tuple.  

D e f i n i t i o n .  If a = (ai.a?, ..., ak) is a non-degenerate  
multiplicity-tuple, we write 8, for the  sequence with 
aj r e m o v e d .  T h e n  i f  a ’ i s  t h e  s e q u e n c e  a wi th  a, 
changed to  b j  we say that the transformation from a to  
a ’ i s  allowable provided both aj and b j  are in the  same 
interval of consecutive elements  of uspan(;iJ), i s .  iff 
there is no  element of uspan(ij) between aj and bj. 

Propos i t ion .  If a ’ i s  an allowable transform of a then 
a’and a are equivalent. 

P r o o f :  S u p p o s e  n o t .  T h e n  t h e r e  i s  s o m e  u n i t a r y  
combination of the  elements on which the  sign of the 
result is different. Let the  unitary vector involved be 
w, so sgn(w*a) is different  f rom sgn(w*a?. Now t h e  
absolu te  va lue  of t h e  d i f fe rence  between w*a and 
w * a ’ i s  la.-b.l Suppose,  without  loss of generality. 
that wj = 1 and let the  residue r be given by r = w*a 
- a. = w * a ’ -  b .  Since t h e  sign of r + aj differs  from 
the sign of r + b .  there must be some number between 
a. and b .  which i s  equal  t o  r ,  which is an element  of 
u s p a n ( i j ) .  B u t  t h i s  c o n t r a d i c t s  t h e  d e f i n i t i o n  of 
allowable transformations. 

J J ’  

J J  

0 

Remark.  Obviously if a ’ i s  an allowable transform of 
a ,  t h e n  a i s  a n  a l l o w a b l e  t r a n s f o r m  of  a’. T h e  
computat ions of our f i rs t  example  demonst ra te  the  
ease with which one can reduce k- tuples  by means of 
sequences of allowable transforms, and hence reduce 
t h e  n u m b e r  of  u n i t s  r e q u i r e d  of  a c o m m i t t e e  n e t  
while  still  preserving t h e  classi fying capacity. W e  
now e n q u i r e ,  how m a n y  e q u i v a l e n c e  c l a s s e s  a re  
there? This  will allow us, with the above proposition, 
t o  find bounds  on t h e  number  of uni ts  in a reduced 
committee equivalent to a given committee. When k = 
3 for instance,  we have seen that there  a re  precisely 
two non-degenerate equivalence classes, which have 
representatives (O,O,!) and (l,l,l). 

D e f i n i t i o n .  Any unitary vector  w is positive if for  
every  mult ipl ic i ty  tuple  a, w*a > 0, i t  is negative if 
f o r  e v e r y  u n i t a r y  v e c t o r  a w * a  < 0,  a n d  i t  i s  
nmbiguous if there  are  some a for which w*a > 0 and 
others for which w*a < 0. 

Remark .  It is clear that, say (1.1 ,.....I) is positive, and 
(- 1,- 1 ,..., - 1) i s  negat ive,  and tha t  (- 1.1.- 1.1 ..... - 1.1) i s  
positive. while (1,- 1.1,- 1 ,..., - 1,l) is ambiguous. (- 1,- 1.1) 
is ambiguous, while (- l,l,l) is positive. 

Propos i t ion .  F o r k  odd,  the  number of equivalence 
classes  of multiplicity- tuples  is at least one  greater 
than half the  number of ambiguous unitary vectors of 
length k. 

Proof :  T h e  equivalence classes are. by definition, the 
se t  o f  d i f f e r e n t  c o n s i s t e n t  a s s i g n m e n t s  t o  t h e  2 k  
different  unitary vectors  of t h e  values  +I  or - 1. T h e  
values  assigned to t h e  positive and negative unitary 
vec tors  a re  forced to  b e  +1 and - 1 respec t ive ly ,  by 
d e f i n i t i o n .  C o n s i d e r  f i r s t  t h e  c a s e  w h e r e  t h e  
ambiguous  vectors  may be ordered by u < v iff for 
every  mult ipl ic i ty- tuple  a, a*u < a*v. Then  we may 
take  half  t h e  ambiguous  vectors  in t h i s  order  and 
observe  that  an equivalence class  is determined by 
choosing where to  put  a zero in the list.  Since there  
a r e  k / 2  e l e m e n t s  i n  t h e  l i s t  t h e r e  a r e  l + k / 2  
equivalence classes. If the vectors cannot be ordered, 
t h e  usual  s t a t e  of affairs ,  t h e r e  can only  b e  more  
equivalence classes than this. 

R e m a r k .  For  small (odd)  k ,  t h e  comparisons are not 
unfavourable to the committee. For example when k = 
3, the  unitary vectors are (l,l ,l),(-l,l ,l) and (1,- 1.1) for 
t h e  posi t ive vectors ,  th ree  cor responding  negat ive 
vectors ,  and t h e  ambiguous vectors  are  (- 1,- 1,l) and 
(1.1.- 1) which a re  pa i red .  W e  may inser t  t h e  z e r o  
b e f o r e  or  a f t e r  t h e  ( -  1,- 1.1) w h i c h  g i v e s  t w o  
equivalence classes, (0.0.1) and (1.1,l). 

For  k = 5 ,  ten of t h e  unitary vectors are positive, ten 
negat ive and t h e  remaining twelve  vectors  fall in to  
six pairs. Among the  six we find a chain of f ive and 
t h e  l a s t  v e c t o r  may occupy any  of  t h e  f i r s t  t h r e e  
places. There are thus 8 equivalence classes. It is easy 
to confirm that the  following 8 multiplicity-tuples are 
inequivalent: (O,O,O,O,l), (O,O,l,l,l), (l,l,l,l,l), (0,1,1,1,2), 
(1,l.I,2,2), (0.1.1.2.3). (1,1,1,1,3) and (1,1,2,2,3). We 
o b s e r v e  t h a t  t h e  maximum s i z e  of t h e  e q u i v a l e n t  
committeee is therefore 9, and the  average size is 5.5.  
I n  o ther  words, by  increasing t h e  number of uni ts  in 
t h e  hidden layer  f rom 5 t o  9 and locking t h e  output  
weights  t o  1, we can guarantee to  solve any problem 
s o l v a b l e  b y  a 3 - l a y e r  F F B P  n e t  wi th  5 u n i t s  (and 
o t h e r s  t h a t  c a n n o t  b e  s o l v e d ! ) .  I t  i s  f o u n d  
experimentally, as  described in the  next section, that 
t h e  s o l u t i o n  i s  o b t a i n e d  very  much f a s t e r  by  t h e  
committee than by the  ful l  back-propagation net, and 
t h e  sys tem is far  less  l ike ly  t o  get t rapped in local  
minima. 
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f 
T a b l e  2 

Net  
Geometry :  3-3-1 3-5- 1 3-7- 1 

M o v e s  

S.B.P. B*p* ] 195 132 105 

0.21 1.2* 
0.01 0.013 

T i m e  B.P. 

2842* 442 1632* 

EXPERIMENTS 

R e m a r k .  T h e  t ra in ing  procedure  for  c o m m i t t e e s  
r e q u i r e s  s o m e  a n a l y s i s  o f  t h e  F F B P  t r a i n i n g  
procedure; an informal discussion of pertintent issues 
may be found in Fahlman [4]. Nilsson describes some 
p r o c e d u r e s  which  h a v e  s o m e  d e f e c t s .  W e  br ie f ly  
outline the crucial issues. 

I f  t h e  commit tee  correctly classifies a point there  is 
no need to d o  anything. If it is in error, we may take it 
that  some of t h e  uni t s  have  to b e  corrected by t h e  
usual  p r o c e d u r e  for  a s ingle  un i t ,  t h e  percept ron  
convergence procedure. The  question is, which units 
is one to  modify? Nilsson gives a heuristic argument 
for modifying t h e  ’ least  wrong’, that is t o  say, if 0 < 
a*x < b*x for  t h e  d a t u m  x and both a and b a re  in 
error  and if only one unit needs to  be adapted,  then 
one  adapts  a. A ra t iona le  for  t h i s  is tha t  minimum 
changes a re  to  be preferred s ince  if t h e  d a t a  se t  i s  
m o s t l y  k n o w n ,  t h i s  i s  l e a s t  l i k e l y  t o  d e s t r o y  
‘knowledge about  t h e  da ta  set  a l ready acquired by 
t h e  net’. A drawback of this  is that  we  may have  an 
initial configuration in which all but one of the  units 
are  remote from all t h e  data ,  and so only one  unit is 
repea ted ly  adapted .  t h e  net  is ‘starved’. Strategies  
such  a s  m a k i n g  r a n d o m  c h o i c e s  of which  uni t  t o  
correct, der ived from annealing algorithm ideas, are  
alternatives. 

We employ the  tactic of correcting all units which are 
in error ,  but  of adapting them by different amounts ,  
the ‘stepsize’being smaller for the more remote data. 
I f  we take  a funct ion such as  1/(1+x2) for example ,  
which d e c r e a s e s  f rom 1 t o  z e r o ,  a n d  use t h i s  a s  a 
s tepsize for t h e  case when t h e  ‘dis tance’  x i s  la*yl 
( f o r  y t h e  a u g m e n t e d  i n p u t  vec tor ) ,  t h e n  t h i s  i s  
precisely equivalent to weighting by the derivative of 
a s igmoid  f u n c t i o n  a rc tan(x) .  T h i s ,  of c o u r s e ,  i s  
p r e c i s e l y  w h a t  i s  a c c o m p l i s h e d  in  t h e  B a c k  
Propagation algorithm; the  actual function arctan(x) 
a p p e a r s  e s s e n t i a l l y  o n l y  v i a  i t s  d e r i v a t i v e .  W e  
observe that t h e  important thing about the  derivative 
of s igmoid  f u n c t i o n s ,  i s  t h a t  t h e i r  d e r i v a t i v e  f o r  
p o s i t i v e  d i s t a n c e s  i s  a lways  n e g a t i v e ,  t h e  c l o s e  
neurons  a re  moved more  than t h e  remote  neurons ,  
a n d  h e n c e  t h e  d y n a m i c  i s  n o t  a t  a n y  s t a g e  a 
cont rac t ion  m a p p i n g .  T h e  r e p e a t e d  opera t ion  of 
different  da ta  on t h e  system gives  us. of course,  an 
iterated function system. 

T h e  a b o v e  o b s e r v a t i o n s  suf f ice  t o  spec i fy  a n e w  
commit tee  n e t  a lgor i thm which we compared with 
standard back-propagation in a series of experiments 
c o n d u c t e d  on  a S U N  S P A R C I - s t a t i o n .  F i r s t  w e  
treated the  parity problem in dimensions 2.3.4 and 5 ,  
i s .  we  t o o k  a uni t  hypercube  in  Rn and  ass igned  
alternate + and - categories t o  the  vertices, for the  

cases of n = 2 t o  5. In dimension 2 this  i s  s imply t h e  
XOR function. We took two 3-layer nets with various 
numbers  of uni ts  in t h e  hidden layer ;  f i rs t  was t h e  
standard back-propagation algorithm and second was 
t h e  case where the  output units were held at weight 
one and only the hidden units corrected according to 
t h e  a b o v e  r u l e ;  w e  r e f e r  t o  t h i s  a s  ‘ s i m p l i f i e d  
back-propagation’ (SBP). Initial assignment of t h e  
weights  was at random in the  interval -3  to 3, and a 
number  of repet i t ions of the  training were r u n .  T h e  
s o  c a l l e d  ‘ga in  p a r a m e t e r ’  w a s  v a r i e d  b u t  t h e  
d e p e n d e n c y  was  not  s t r o n g  o v e r  a wide  range  of 
values. The averaged results are  shown i n  table I. 

T a b l e  1. 

3 - L a y e r  Nets: T h e  Pari ty  P r o b l e m  

Dimens ion  2 3 4 S 

Net 
Geometry :  2-3-1 3-3-1 4-5-1 5 - 7 - 1  

M o v e s  
B.P. 215 2842* Y01* 3896* 

S.B.P 46 195 760 1720 

T i m e  B.P. 0.03 0.Y* 0.8’ 13.0* 
( secs)  S.B.P. 0.002 0.016 0.2 1.3 

* indicates that some runs failed to converge 
within 100,000 moves, 

Different numbers  of h idden  uni ts  produced larger  
variations in numbers  of moves and t imes for  Back- 
Propagat ion  t h a n  for  S impl i f ied  B.P. a s  shown in 
table 2, where t h e  data  set was the parity problem in 
dimension 3: 

A more typical problem of an applied nature was used 
as  a more real is t ic  tes t .  Some da ta  obtained from an 
industrial collaborator relating to measurements 
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made on mineral  samples  was obtained.  T h e  vectors  
of l e n g t h  e i g h t  w e r e  o b t a i n e d  f rom an  a p p a r a t u s  
w h i c h  r e f l e c t e d  l i g h t  f r o m  m i n e r a l  s a m p l e s  a n d  
b i n n e d  i t  i n t o  i n t e r v a l s  of t h e  s p e c t r u m .  Co lour  
gradings by eye  were assigned to the  two categories of 
data. Dividing the  data into test data and training data 
h a s  e s t a b l i s h e d  t h a t  t h e  a c c u r a c y  o f  a 
back-propagation neural net is of the order of 78%. A 
three layer back propagation net was therefore trained 
unt i l  t h i s  leve l  of e r ror  was  r e a c h e d .  S imi la r ly ,  a 
commit tee  ne t  was t ra ined to  t h e  same l e v e l .  T h e  
resul ts  for different  numbers  of units i n  t h e  hidden 
layer are shown in table  3. Here we give run times on 
SLN SPARC stations required to obtain different per 
c e n t a g e s  of t h e  d a t a  c o r r e c t l y  c l a s s i f i e d .  2 0  
repetitions: 

T a b l e 3 .  
Real  Data: T h r e e  Layer  ne ts .  

BP Times .  seconds :  

%of d a t a  s e t  cor rec t  
7 5 %  7'1% 7 9 %  

Net 
Geometry  
8-1-1 4 27 94 7 * 
8-3-1 253 1085 * 
8-5- 1 160 1037 * 

Simpl i f ied  BP T i m e s ,  seconds :  

%of d a t a  s e t  cor rec t  
7 5 %  77% 7 9 %  

Net 
(;eo m e t ry 
8- 1- 1 23 65 94 
8-3-1  36 43  88 
8-5- 1 

81% 

* 
* 
* 

81% 

* 
17 

74 8 

- denotes n o  data collected, * denotes failure to 
converge. 

CONCLUSIONS. 

I t  m i g h t  b e  a rgued  t h a t  Back Propagat ion  i s  so  
inefficient an algorithm that to attempt to improve it 
m a r g i n a l l y  i s  t o  w a s t e  t i m e  a n d  e n e r g y .  
Improvements using, for example conjugate gradient 
and o ther  types of net are  known [ 5 ] , [ 6 ] .  We feel it 
is worth investigating the algorithm however for four 
reasons: first i t  constitutes something of a standard, 

if a low one;  second some of t h e  ' improvements '  
abandon all claim to  being neural models, while 
s o m e  k i n d  of  a c l a i m  c a n  s t i l l  b e  m a d e  for  t h e  
c o m m i t t e e  n e t .  T h i r d ,  a s  m e n t i o n e d  i n  t h e  
in t roduct ion ,  i t  i s  poss ib le  t h a t  s o m e  of t h e  o t h e r  
i m p r o v e m e n t s  c a n  b e  m a d e  i n  a d d i t i o n  t o  o u r  
modification. In  particular, nets  with more layers can 
b e  handled using s imilar  ideas ,  and in a subsequent  
paper  we  shal l  make s imilar  modif icat ions to  four-  
layer nets. Finally, the committee net is much simpler 
t o  ana lyse :  Back-Propagat ion  c o n c e a l s  e s s e n t i a l  
features of the dynamic. 

For nets with a relatively small number of units in the 
h idden  iayer ,  improvements  in t ime by a fac tor  o f  
about  2 0  a re  readi ly  a t ta inable .  T h i s  i s  d u e  to  two 
f a c t o r s :  f i r s t  t h e  s impl i f ica t ion  of t h e  a l g o r i t h m  
entai ls  less computation and second, the  reduction in 
t h e  s ize  of t h e  search space makes  for  fewer  passes  
through t h e  t ra ining set and reduces t h e  risk of t h e  
net becoming trapped in a local minimum. 
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