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IMPROVING THREE LAYER NEURAL NET CONVERGENCE

Michael Alder, Sok Gek Lim, Paul Hadingham and Yianni Attikiouzel

The University of Western Australia, Australia

INTRODUCTION

The multi-layer Perceptron [1], the MADALINE [2],
the committee net 3] and the feed forward networks
trainable by the back-propagation algorithm, [4], are
related in ways which are not always entirely clear.
It is one aim of this paper to make some of them a
little clearer.

The main application of neural networks has been as
trainable pattern classifiers, and that is how they will
be viewed in this paper. In the first part of this paper
we investigate the relationship between three layer
feed forward back-propagation nets ( using the
terminology of [4]) and the committee net of [3], and
show that a simple modification to the algorithm of
the latter makes them, in respect of their power to
classify data sets, equivalent. Two algorithms may,
however, be equivalent in power but differ greatly in
their practicality. In the second part of the paper we
conduct some experiments in order to determine
whether the modified committee algorithm can
compete with back-propagation in a variety of
applications. It is found that the committee algorithm
(a) is about 10 times as fast in some applications and
(b) is much less prone to getting trapped in local
minima.

The theoretical interest in the paper stems from the
ease of analysing the committee algorithm together
with the equivalence.The experimental interest is
that this method of speeding up back-propagation
may be used with other improvements to reduce
training times in some applications.

In what follows we restrict attention, without loss of
generality, to the case of a binary classification
problem.

THEORETICAL CONSIDERATIONS

Terms not defined in this paper are to be found in the
references, specifically see [3] for definitions of
terms relating to committee nets. Briefly, a committee
net is a (trainable) set of k oriented hyperplanes in
the space each returning a ‘vote’ +1or -1according
to which side of the hyperplane a datum is. The votes
are summed by the ‘output unit’ and compared with a
threshold of zero if the number of units is odd. By

adding, if necessary, a unit or units remote from the
data or by giving a threshold of 1/2, the case of an
even number of units can be treated, as can
thresholds other than zero.

The first proposition is the trivial observation, made
for completeness:

Proposition. Any binary data set can be correctly
classified by a committee net.

Proof: The argument is by induction on the number
of points of the data set, We first observe that if there
are only two points, one of each category, then the set
is linearly separable and a single unit net will serve.
Now suppose that there is always a correct
classification of a data set having a total of r data
points, and consider a dat set having r+1 points. One
of the points at least must be extremal, i.e. may be
separated from all the others by a hyperplane. The
other points may be correctly classified by a
committee. Without loss of generality, suppose the
new point is positive and the committee which
classifies the rest of the data set would assign it a
negative value. Then we can insert between the old r
points and the extremal point suffitiently many
hyperplanes to make the new point positive. This will
also add negative values to the r points which may
alter the classification. We therefore take as many
hyperplanes again which have all the points on the
positive side. This returns the r points to the same
values they had before, and preserves the positive
sign of the extremal point.

0

Remark. There are better ways. In particular we
need add only half the number of new hyperpianes
suggested in the above argument. Even so, the
argument is hardly cheering, suggesting as it does
that the number of hyperplanes, and hence of hidden
units, may increase with the size of the data set.

Remark. The 3-layer FFBP net may be regarded as a

committee net with variable weights for the voting
strengths together with a variable threshold. Again,

the threshold is not essential as it can be replaced
with a fixed threshold of zero and sufficiently remote
units added in. Specifically, in R™ with input datum



X = (X1,Xp,...x)T the 3-layer FFBP net implements a
map:

f(x) = sgn (jE bjsgn(zi:aijxi))
where the a;; are the weights in the first hidden layer
from the i'" component of the input to the j'* hidden
unit and the b; are the weights to the output unit, and
the sgn function takes the value 1if its argument is
positive, - 1if it is negative and is not defined at zero.

Suppose that some data set is correctly classified by
some such 3-layer FFBP net. We observe that since
the data set is finite and f-1{1} is open, as is £ }{-1),
there is stability under perturbations of the weights.
Specifically we may take the bj to be rational, which
is just as well given the need for using these nets via
computer simulations.

Moreover, if any of the coefficients should be
negative, then reversing the sign of the corresponding
ajj weights will allow us to reverse its sign to still
give a solution. And if a weight should be zero, we
can simply remove the unit altogether. Hence we may
take it that the weights are all positive rationals, and
since multiplying throughout by any positive number
will preserve the sign of the solution, we may
multiply by the Least Common Multiple of the
denominators to make the weights all positive
integers, which we can then regard as multiplicities.
This is now a committee net with some of the units
replicated by their multiplicities.

The above argument leaves one with the impression
that for any data set that can be classified by a 3-layer
FFBP net there is a committee net which can classify
it, but the number of units required for this
equivalent committee can be arbitrarily large.
Happily, such is not the case. We proceed to show
this by a series of propositions motivated by some
examples.

Example. Suppose we have a committee with
multiplicities attached to the units: I shall write:

(2, 11, 19, 26) to indicate that we have four units
which we may take it correctly classify some data set
in R"  provided we have the given multiplicities.
Alternatively, we have 2+11+19+26 units but only
four of them are distinct hyperplanes.

If n is big enough, then there will be some region of
the space having a count of 2+11+19+26, and as we
move across the last hyperplane we move into a
region having a count of 2+11+19 -26, and so on. Now
consider the second hyperplane. The regions on the

positive side of it may have values ranging from
2+11+19+26 to -2+11-19-26, with similar values for
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the negative side. Now these numbers when added to
+11 or - 11 are from the set {-47,-43,-9,-5,5,9, 43,
47). We observe that the sign of the result of adding
11 or subtracting 11 from these numbers will not be
altered by changing the number 11 to some
sufficiently close other number. In particular,
choosing any number to replace 11 which is strictly
between 9 and 43 will not alter any signs; this is, of
course, that interval of the values obtained by taking
sums and differences of the multiplicities which
contains 11. We may therefore replace the given
quartet (2,11,19,26) by the equivalent quartet
(2,19,19,26) which must also correctly classify the
same data set. Similarly, the 26 may be changed to
any value between 2 and 36 so may also be made
equal to 19. Finally the 2 may take any value between
-19 and 19 in particular may take the value 0. We
therefore have that the given quartet is equivalent to
the quartet (0,19,19,19). This is of course equivalent to
the quartet (0,1,1,1) or the triple (1,1,1). In other
words, the original total of 58 units can be reduced
to 3 and still classify the same data set.

Example. Suppose we have three units with
multiplicities positive integers (a,b,c). We may,
without loss of generality, suppose them arranged in
non-decreasing order and not all the same. Now if ¢ >
a+b, the first two units cannot change the sign of a
region by enough to compensate for the vote of the
third unit and may be removed; the triple is
equivalent to a single unit in the third location.
Alternatively we may argue that b lies between a-c
and c-a and can be put to 0, whereupon a lies between
-c and ¢ and can also be put to 0, finally divide (0,0,¢c)
by ¢. If c<a+b then b lies between c¢-a and c+a and
can be put equal to ¢, and finally a lies between 0 and
2¢ and hence may also be put to c, giving (c,c,c) ~
(1,1,1). Finally,the case where ¢ = a+b is easily seen to
be reducible to a triple (1,1,2) and requires a total of
four units. Such a case can certainly arise from a
3-layer FFBP net, and we observe that in this case we
need one extra unit in an equivalent committee.

Definition. Let a = (a;,a;,,...a;) be a set of
non-negative integers. The unitary span of the set js
the set of 2K integers obtained by taking all linear
combinations with coefficients in {-1,+1}. ais said to
be unitarily degenerate iff 0 is in the unitary span. We
write uspan(a) for the set of 2k integers comprising
the unitary span.

Definition. Let 2 = (a;,...a ) and b = (b,...b, ) be two
k-tuples of non-negative integers in non-decreasing
order. Let w = (w;,...w, ) be a unitary vector i.e. each
wj is either -1or +1. Then we write a~b iff for every
unitary w, sgn(w*a) = sgn(w*b) where * denotes the
usual inner product.




Remark. Clearly ~ is an equivalence relation and
equally clearly if the k-tuples represent the
multiplicities of units in the hidden layer, replacing
one set of multiplicities with the other will not
change the clasification of the net. If a k-tuple is
degenerate then any equivalent k-tuple is also
degenerate.

Definition. A k-tuple of non-negative integers in
non-decreasing order will be referred to as a
multiplicity-tuple.

Definition. If a = (at.a2,....ak)is a non-degenerate
multiplicity-tuple, we write éj for the sequence with
a; removed. Then if a'is the sequence a with 3
changed to b)- we say that the transformation from a to

a’is allowable provided both a; and bj are in the same
interval of consecutive elements of uspan(zij), i.e. iff
there is no element of uspan(éj) between a and bj.

Proposition. If a’is an allowable transform of a then

a’and a are equivalent.

Proof: Suppose not. Then there is some unitary
combination of the elements on which the sign of the
result is different. Let the unitary vector involved be
w, s0 sgn{w*a) is different from sgn(w*a’). Now the
absolute value of the difference between w*a and
w*a'is la.-b:l. Suppose, without loss of generality,
that w; = 1 and let the residue r be given by 1 =w*a
-a; =w*a'- bj Since the sign of 1 + 3 differs from
the sign of r + b; there must be some number between
3 and b, which is equal to r, which is an element of
uspan(d;). But this contradicts the definition of
allowable transformations.

u

Remark. Obviously if a’is an allowable transform of
a, then a is an allowable transform of a’. The
computations of our first example demonstrate the
ease with which one can reduce k-tuples by means of
sequences of allowable transforms, and hence reduce
the number of units required of a committee net
while still preserving the classifying capacity. We
now enquire, how many equivalence classes are
there? This will allow us, with the above proposition,
to find bounds on the number of units in a reduced
committee equivalent to a given committee. When k =
3 for instance, we have seen that there are precisely
two non-degenerate equivalence classes, which have
representatives (0,0,1) and (1,1,1).

Definition. Any unitary vector w is positive if for
every multiplicity tuple a, wxa > 0, it is negative if
for every unitary vector a w*a < 0, and it is
ambiguous if there are some a for which w*a > 0 and
others for which w*a <0.
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Remark. Itis clear that, say (1,1,.....1) is positive, and
(-1,-1,...,- 1) is negative, and that (- 1,1,-1,1,...,-1,1) is
positive. while (1,-1,1,- 1,...,- 1,1) is ambiguous. (- 1,- L1
is ambiguous, while (- 1,1,1) is positive.

Proposition. For k odd, the number of equivalence
classes of multiplicity- tuples is at least one greater
than half the number of ambiguous unitary vectors of
length k.

Proof: The equivalence classes are. by definition, the
set of different consistent assignments to the 2K
different unitary vectors of the values +1 or -1. The
values assigned to the positive and negative unitary
vectors are forced to be +1 and -1 respectively, by
definition. Consider first the case where the
ambiguous vectors may be ordered by u < v iff for
every multiplicity-tuple a, a*u < a*xv. Then we may
take half the ambiguous vectors in this order and
observe that an equivalence class is determined by
choosing where to put a zero in the list. Since there
are k/2 elements in the list there are 1+k/2
equivalence classes. If the vectors cannot be ordered,
the usual state of affairs, there can only be more
equivalence classes than this,
a

Remark. For small (odd) k, the comparisons are not
unfavourable to the committee. For example when k =
3, the unitary vectors are (1,1,1),(- 1,1,1) and (1,- 1,1) for
the positive vectors, three corresponding negative
vectors, and the ambiguous vectors are (- 1,- 1,1) and
(1,1,-1) which are paired. We may insert the zero
before or after the (-1,-1,1) which gives two
equivalence classes, (0,0,1) and (1,1,1).

For k = 5, ten of the unitary vectors are positive, ten
negative and the remaining twelve vectors fall into
six pairs. Among the six we find a chain of five and
the last vector may occupy any of the first three
places. There are thus 8 equivalence classes. It is easy
to confirm that the following 8 multiplicity-tuples are
inequivalent: (0,0,0,0,1), (0,0,1,1,1), (1,1,1,1,1), (0,1,1,1,2),
(1,1,1,2,2), (0,1,1,2,3), (1,1,1,1,3) and (1,1,2,2,3). We
observe that the maximum size of the equivalent
committeee is therefore 9, and the average size is 5.5.
In other words, by increasing the number of units in
the hidden layer from 5 to 9 and locking the output
weights to 1, we can guarantee to solve any problem
solvable by a 3-layer FFBP net with 5 units (and
others that cannot be solved!). It is found
experimentally, as described in the next section, that
the solution is obtained very much faster by the
committee than by the full back-propagation net, and
the system is far less likely to get trapped in local
minima,




EXPERIMENTS

Remark. The training procedure for committees
requires some analysis of the FFBP training
procedure; an informal discussion of pertintent issues
may be found in Fahlman [4]. Nilsson describes some
procedures which have some defects. We briefly
outline the crucial issues.

If the committee correctly classifies a point there is
no need to do anything. If it is in error, we may take it
that some of the units have to be corrected by the
usual procedure for a single unit, the perceptron
convergence procedure. The question is, which units
is one to modify? Nilsson gives a heuristic argument
for modifying the ‘least wrong’, that is to say, if 0 <
a*x < b*x for the datum x and both a and b are in

error and if only one unit needs to be adapted, then
one adapts a. A rationale for this is that minimum

changes are to be preferred since if the data set is
mostly known, this is least likely to destroy
‘knowledge about the data set already acquired by
the net’. A drawback of this is that we may have an
initial configuration in which all but one of the units
are remote from all the data, and so only one unit is
repeatedly adapted, the net is ‘starved’. Strategies
such as making random choices of which unit to
correct, derived from annealing algorithm ideas, are
alternatives.

We employ the tactic of correcting all units which are
in error, but of adapting them by different amounts,
the ‘stepsize’ being smaller for the more remote data.
If we take a function such as 1/(l+x2) for example,
which decreases from 1to zero, and use this as a
stepsize for the case when the ‘distance’ x is laxyl
(for y the augmented input vector), then this is
precisely equivalent to weighting by the derivative of
a sigmoid function arctan(x). This, of course, is
precisely what is accomplished in the Back
Propagation algorithm; the actual function arctan(x)
appears essentially only via its derivative. We
observe that the important thing about the derivative
of sigmoid functions, is that their derivative for
positive distances is always negative, the close
neurons are moved more than the remote neurons,
and hence the dynamic is not at any stage a
contraction mapping. The repeated operation of
different data on the system gives us, of course, an
iterated function system.

The above observations suffice to specify a new
committee net algorithm which we compared with
standard back-propagation in a series of experiments
conducted on a SUN SPARCI-station. First we

treated the parity problem in dimensions 2,3,4 and 5,
i.e. we took a unit hypercube in Rn and assigned

alternate + and - categories to the vertices, for the
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cases of n =2 to 5. In dimension 2 this is simply the
XOR function. We took two 3-layer nets with various
numbers of units in the hidden layer; first was the
standard back-propagation algorithm and second was
the case where the output units were held at weight
one and only the hidden units corrected according to
the above rule; we refer to this as ‘simplified
back-propagation’ (SBP). Initial assignment of the
weights was at random in the interval -3 to 3, and a
number of repetitions of the training were run, The
so called ‘gain parameter’ was varied but the
dependency was not strong over a wide range of
values. The averaged results are shown in table 1

( Table 1. )

3-Layer Nets: The Parity Problem

Dimension 2 3 4 5

Net

Geometry: 2-3-1  3-3-1 4-5-1  5-7-1
Moves

B.P. 215 2842% 901*  3896*

S.B.P 46 195 760 1720

Time B.P. 0.03 0.9* 0.8* 13.0*

(secs) S.B.P. 0.002 0.016 0.2 13
* indicates that some runs failed to converge
within 100,000 moves, J

\..

Different numbers of hidden units produced larger
variations in numbers of moves and times for Back-
Propagation than for Simplified B.P. as shown in
table 2, where the data set was the parity problem in
dimension 3:

~\
( Table 2
Net
Geometry: 3-3-1 3-5-1 3-7-1
Moves
B.P. 2842% 442 1632*
S.B.P. 195 132 105
Time B.P. 0.9* 0.21 1.2*
(secs) S.B.P. 0.016 0.01 0.013
_—

A more typical problem of an applied nature was used
as a more realistic test. Some data obtained from an
industriai collaborator relating to measurements




made on mineral samples was obtained. The vectors
of length eight were obtained from an apparatus
which reflected light from mineral samples and
binned it into intervals of the spectrum. Colour
gradings by eye were assigned to the two categories of
data. Dividing the data into test data and training data
has established that the accuracy of a
back- propagation neural net is of the order of 78%. A
three layer back propagation net was therefore trained
until this level of error was reached. Similarly, a
committee net was trained to the same level. The
results for different numbers of units in the hidden
layer are shown in table 3. Here we give run times on
SUN SPARC stations required to obtain different per
centages of the data correctly classified, 20
repetitions:

(- Table3. A
Real Data: Three Layer nets.
BP Times, seconds:
% of data set correct
75% 77 % 79% 81%
Net
Geometry
8-1-1 427 947 * *
8-3-1 253 1085 * *
8-5-1 160 1037 * *
Simplified BP Times, seconds:
% of data set correct
75% 77 % 79 % 81%
Net
Geometry
8-1-1 23 65 94 *
8-3-1 36 43 88 77
8-5-1 - - - 748
- denotes no data collected, * denotes failure to
converge.
\. J
CONCLUSIONS.

It might be argued that Back Propagation is so
inefficient an algorithm that to attempt to improve it
marginally is to waste time and energy.
Improvements using, for example conjugate gradient
and other types of net are known [5],[6]. We feel it
is worth investigating the algorithm however for four
reasons: first it constitutes something of a standard,
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if a low one; second some of the ‘improvements’
abandon all claim to being neural models, while

some kind of a claim can still be made for the
committee net. Third, as mentioned in the
introduction, it is possible that some of the other
improvements can be made in addition to our
modification. In particular, nets with more layers can
be handled using similar ideas, and in a subsequent
paper we shall make similar modifications to four-
fayer nets. Finally, the committee net is much simpler
to analyse; Back-Propagation conceals essential
features of the dynamic.

For nets with a relatively small number of units in the
hidden fayer, improvements in time by a factor of
about 20 are readily attainable. This is due to two
factors: first the simplification of the algorithm
entails less computation and second, the reduction in
the size of the search space makes for fewer passes
through the training set and reduces the risk of the
net becoming trapped in a local minimum.
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