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ABSTRACT 
This paper describes a new approach to the unsupervised 
segmentation of images. A Markov random field model is 
used for prior label field modelling. Unlike conventional 
stochastic model-based approaches, each image class is not 
characterised by a parametric model. The algorithm com- 
pares the data in local windows around each pixel with the 
global distribution of data in each class using appropriate 
distance metrics. A novel method for determining the num- 
ber of image classes is presented. 

1. INTRODUCTION 

There has been a large amount of research published on the 
application of statistical methods to the problem of MR im- 
age segmentation. In the most basic case, clustering tech- 
niques have been applied in both supervised and unsuper- 
vised contexts. In particular the EM algorithm has been 
applied to the task of unsupervised Gaussian mixture mod- 
elling [I, 2, 3, 41. Information theoretic (IT) measures, such 
as the Akaike Information criterion (AIC) [SI or minimum 
description length (MDL) [SI can then be used for cluster 
validation. 

More recently, improvements have resulted through the 
application of Markov random field (MRF’) image models 
(7, 8, 9, 101. In particular, MRFs allow prior contextual 
anatomical information, and our intuitive notions regarding 
the physical properties of images to be incorporated easily 
into the segmentation process. 

Currently there are two major drawbacks that exist with 
these approaches. Firstly, in almost all cases, paramet- 
ric models are utilised to characterise the image formation 
process. That is, each tissue is assumed to give rise to a 
characteristic MR signature - Multidimensional Gaussian 
models are used almost exclusively. There is a need, there- 
fore, to estimate parameters for these models. Supervised 
methods, which rely on the collection of training data from 
exemplar images have been shown to be impractical for this 
task. Unsupervised methods are generally unreliable, and 
are in most cases very sensitive to the initial estimates used. 
In addition, there is no inherent reason to suggest a-priori 
that any particular parametric model is a “good” model for 
the data, and by imputing an incorrect model on the data, 
suboptimal segmentations may result. 

The second diaculty is in deciding how many tissues 
are present in the images - the cluster validation prob- 
lem. Once again, information theoretic criteria have been 
used. The use of Markov field models, however, introduces 
dependencies into the data, which tend to make the use of 
IT criteria both uncertain and computationally expensive 
(see, for example, [IO]). 

In this paper, we propose a new method of unsuper- 
vised MR image segmentation, based on the recent work 
of Kervrann and Heitz [ll] and Geman & Geman (121, 
which does not rely on parametric approaches to data mod- 
elling. Furthermore, the number of tissues in the image is 
estimated as an integral part of the segmentation process, 
rather than as a post-hoc “goodness of fit” measure as pro- 
vided by AIC or MDL. 

2. PROBLEM FORMULATION 

Let L be a rectangular array of sites, L = { ( i , j ) ;  1 5 i 5 
N I ,  1 5 j 5 Nz}. Furthermore, for notational convenience, 
assume that the two-dimensional lattice can be indexed by 
a single parameter in the manner described by [13], where 
each site is referenced by a single index, s. Associated with 
each site s E C is a label, zs, that specifles the image class 
to which the site belongs. Thus, zs = r,r E {1,2,. . . , K }  
where K is the number of image classes’ 

It is assumed that there is a true, but unknown, la- 
belling of sites, x’ = {z:; s E L}. In the context of un- 
supervised segmentation, the problem is to determine the 
number-of image classes, K, and to reconstruct an esti- 
mate, X, of the true label field from the observed image 
data, Y = {ys;s E L}; where the image data consists of 
M observations at each site, ys = [y!”, yy) ,  . . . , yliM)]. In 
addition to the observed data, additional constraints may 
be imposed on the estimated labelling by the application 

‘Note that each site is considered to belong completely to one 
class. In general, it may be the case that the true labelling of each 
site is composed of a mixture of classes - this is the case of so- 
called “fuzzy” segmentation. This type of model is quite appre 
priate for MR image segmentation, where partial volume effects 
can have a significant impact on the performance of “hard” seg- 
mentation algorithms. The extension of the algorithm described 
in this paper to “fuzzy” segmentation is being investigated, but 
will not be considered here. 
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of predefined image models for the label field and through 
assumptions placed on the image formation process. In un- 
supervised segmentation, the parameters associated with 
these models either need to be estimated directly from the 
observed data, or are preset to default values independent 
of the image data. 

3. STOCHASTIC MODEL-BASED IMAGE 
SEG MENTATI 0 N 

In terms of the so-called stochastic model-based approach 
to segmentation 18, 2, 3, 14, 15, lo], the above problem can 
be stated as 

where R is the sample space of all possible segmenta- 
tions. That is, choose the segmentation which has the high- 
est likelihood, given the data that was observed. By use of 
Bayes theorem, (1) can be reformulated as 

= argmaxP(YIX)P(X) (2) X € R  

= arg rgax[log P ( Y  1x1 + log P(X)] 

Therefore, to obtain an estimate of the label field, it 
is necessary to specify an observation model, P(YlX), and 
a prior model, P ( X ) .  This is known as the maxirnum a- 
posteriori (MAP) estimate of X. Note that in the case of 
an assumption of a uniform prior on the label field2, (2) 
reduces to the maximum likelihood (ML) estimate 

(3) 

3.1. Gaussian Mixture Models 

The most widely employed assumption in image segmenta- 
tion is that the observation model can be described by a 
conditionally independent Gaussian mixture model [3, 16, 
171. In this case, the observations at each site are assumed 
to be conditionally independent and to have the same con- 
dtional probability, p(yslzs), dependent only on zS. There- 
fore. the observation model can be written as 

P(YIX) = ~ P ( Y . 1 5 5 )  (4) 
JEL 

and with the assumption of a multivariate Gaussian 
p.d.f. 

(5) 
where pk and Ak are the mean and covariance matrix. 

3.2. Markov Random Fields 

The use of the above model in ML image segmentation has 
been widely reported [l, 18, 41. The efficacy of the ML 
approach, however, has proved to be less than satisfactory. 
More recently, the MAP approach has become more preva- 
lent. In particular, the use of Markov random field models 
for the prior, P(X), has been widely reported. 

In very general terms, the use of Markov random field 
priors allows the introduction of a degree of spatial depen- 
dence between labels into the segmented image. In its sim- 
plest form, this implies a tendency for the label at any par- 
ticular site to be similar to labels at neighbouring sites. An 
equivalent formulation3 of an MRF is to describe the spa- 
tial dependency in terms of joint probabilities in the form 
of a Gibbs Distribution. In this case, the label field prior is 
of the following form 

e-LJ(x) 
P ( X = x ) =  - (6) 2 

where U ( x )  is called the energy function and 2 is a normal- 
ising constant, known as the partition function. 

A commonly used energy function is the multi-level lo- 
gistic MRF [19] 

sEL t€N. 

where p is a predefine MRF strength constant, a(.) is 
the usual dirac-delta function, and N, is a suitably defined 
neighbourhood of sites about s. 

3.3. Current Status 

The utility and application of the models described above 
constitutes a substantial portion of the current literature 
on statistically-based image segmentation. A number of 
limitations to this approach have been identified. 

and covariance matrix) for the observation model is a very 
diificult problem. A common way of tadding this is to it- 
eratively segment the image and then recalculate the pa- 
rameters, assuming that the segmentation is correct. This 
procedure can be shown to converge to a partial optimal 
solution (POS) [20]. Simultaneous segmentation and pa- 
rameter estimation can be performed by using an approach 
akin to the EM algorithm [16]. Zhang et a1 describe such 
an approach [lo], where at each iteration, every site is par- 
tially assigned to all classes, with a "hard" segmentation 
being performed once the parameter values converge. This 
approach yields significant segmentation improvements, but 
the EM algorithm is very sensitive to initial conditions, and 
there is no way to guarantee that a sensible solution will re- 
sult. 

The second problem with mixture modelling approaches 
is that it is difficult to determine the correct number of im- 
age classes. The number of classes is typically estimated by 
searching, over a range of K ,  for a value that minimises a 

Firstly, the determination of the model parameters (mean 

2That is, all prior distributions are equally probably - gen- 
erally used in the case when no prior information is available 
regarding the properties of the label field 

3There are certain requirements for this equivalence, which 
are described in [13] and many of the other papers referenced in 
this paper. 
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given model-fitting criterion, F ( K ) ,  such as Akaike’s infor- 
mation criterion (AIC) [5] or minimum description length 
(MDL) [6]. These measures are basically a trade-off be- 
tween the fit of the model to the data and the complexity 
of the model. Experimental results with synthetic images 
[21], however, clearly demonstrate that they are unable to 
consistently estimate the correct number of image classes. 

4. A NEW APPROACH 

Kervrann and Heitz [ll] proposed an alternative method to 
estimate the number of image classes, whereby new image 
classes are created during the segmentation process. An 
outlier class, p, is introduced and pixels are assigned to this 
outlier class if they do not conform to any of the existing 
classes. In a general segmentation task, the distribution of 
data within each class may not be Gaussian. Rather than 
imposing a given model on the data, Kervrann and Heitz 
proposed comparing the local distribution of data around 
each pixel with the distribution of data within each image 
class. Their methods were specifically geared toward tex- 
ture segmentation, where a large number of features are 
calculated from the original image. The method described 
here is an extension of these concepts to the case of general 
image segmentation. 

4.1. The Energy Function 

In this approach, the MAP segmentation of (2) is restated 
as a problem of energy minimisation, and so 

X = argmax[logP(YIX) +logP(X)] 
XEfl 

XEf l  
= argmin[-lOgP(YIX) -logP(X)] (8) 

= argxFfl [U(YIX) + V(X)l 

where U(YIX) and U(X) are energy functions. 
The second term, U ( X ) ,  is the energy in the Markov 

random field. A multi-level logistic MRF is used for this, 
so that 

s E L  :€N. 
The first term, U(YIX), measures the difference be- 

tween the local distribution of data near each site s and 
the distribution of data for the image class k to which s is 
assigned (z, = k). Thus, this term encourages each site s 
to be labelled zb = k so that the local distribution of data 
matches the regional distribution of data for image class k. 

In order to define U(Y IX) mathematically, let W, be a 
window centred on site s over which the local distribution of 
data is computed and let Yw, be the data associated with 
the subset of sites that lie within the window W,. Similarly, 
let Y R ~  be the data associated with sites assigned to image 
class k. This is illustrated in figure 1. The term U(YIX) 
can then be expressed as : 

Figure 1: Local and global region statistics 

where f (Y)  represents the distribution of the data Y ,  V[f, 91 
is a measure of the difference between the two distributions 
f and 9,  and 6(.) is the Dirac-Delta function. 

The distribution of data within each image class k is 
used as a model of the conditional probability density func- 
tion p(yslzs = k). Thus, ~ ( Y R ~ )  is simply the histogram 
of the data in image class k normalised to unit area and 
f (Yw, ) is the normalised histogram of data within window 
W,. Note that if the data Y is made up of M observations 
at each site, then f(Y) is an M-dimensional distribution, 
that is, f(Y) : RM + R. 

There are many methods available for quantifying the 
difference between two probability density functions, the 
most common of which are the L, distance, the Hellinger 
distance (H,), the Kullback-Leibler number, and the Kol- 
mogorov-Smirnov distance. An analysis of the relative mer- 
its of each of these measures can be found in [21]. For the 
remainder of this paper, it will be assumed that the total 
variation (L1) metric has been used. 

The overall energy function U(YIX) + U(X) is min- 
imised using the iterated conditional modes (ICM) algo- 
rithm [7], which selects the label 5, at each site s to min- 
imise the local energy 

is = arg min u(za = klY,XN,) (11) k 

where the local energy u(zs = klY,X,u,), is given by : 

u b  = klY,XN,) = V[f(YW,),f(YRJ+P c [1-2b(k-i,)] 
:€N* 

(12) 
The sites are updated using a partially synchronous scheme 
based on coding sets [7]. 

4.2. Region Formation 

In order to allow region formation during the segmentation 
process, an outlier region is also included in the choice of 
possible image classes during the ICM process. The manner 
in which this manifests itself is that any site which has an 
energy greater than some predetermined threshold4 with 
the d i g  image classes is labelled as an outlier, p. 

41n the implementation of the algorithm, this threshold is 
dynamically adjusted. Space limitations preclude a detailed de- 
scription in this paper. 

oEL 
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The segmentation procedure begins by assuming that 
the entire image can be represented by a single class. The 
probability distribution of the data is calculated from the 
image data, and each pixel is reassigned to the initial class, 
or to the outlier class, depending on how closely the data 
around it matches the global distribution of the initial class 
data. If a sufficiently large contiguous outlier region exists 
(typically 1-2% of the image is used), the pixels within that 
regon are assigned to a new class. The class probability 
distributions are re-estimated based on the current labelling 
and the segmentation-estimation process iterates until no 
outlier regions of a sufficient size exist. 

5.  RESULTS 

We have applied this segmentation algorithm to a num- 
ber of synthetic images and MR images. Our results show 
significant improvements over other unsupervised methods 
for MR image segmentation. In particular, we have found 
that the estimation of the number of tissues present in MR 
images using this approach is more accurate than those 
that rely on information theoretic measures, such as AIC 
or MDL. 

Due to space limitations, only the theoretical aspects 
of the algorithm are presented here. For a more detailed 
description and an extensive set of experimental results on a 
range of images, readers are referred to our technical report 
[21]. Alternatively, preprints of a full paper submitted to 
IEEE Bans. Image Processing may also be obtained by 
contacting the authors. 
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