Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Specificity of siderophore-mediated transport of iron in rhizobia

Carson, K.C., Glenn, A.R. and Dilworth, M.J. (1994) Specificity of siderophore-mediated transport of iron in rhizobia. Archives of Microbiology, 161 (4). pp. 333-339.

Link to Published Version: http://dx.doi.org/10.1007/BF00303589
*Subscription may be required

Abstract

The trihydroxamate siderophore, hydroxamate K, has been purified from culture filtrates of iron-deficient Rhizobium leguminosarum biovar viciae MNF710. The iron complex has a molecular weight of 828 and an absorption maximum at 443 nm (εM=1510). 55Fe complexed to purified hydroxamate K was taken up by MNF710, its hydroxamate-negative mutant MNF7102 and Rhizobium leguminosarum biovar trifolii WU95 via an iron-regulated transport system, but Rhizobium meliloti U45 failed to take up the iron-siderophore complex under any conditions. A similar pattern of iron uptake was observed with ferrioxamine B. MNF710, MNF7102, U45 and WU95 all transported 55Fe-ferrichrome but only the first three strains took up 55Fe-ferrichrome A. All these 55Fe-trihydroxamate uptake systems were ironregulated in MNF710, MNF7102 and WU95. In contrast, uptake of 55Fe-rhodotorulate, a dihydroxamate, was essentially constitutive in all four organisms. Similarly, uptake of 55Fe-citrate and 55Fe-nitrilotriacetic acid was constitutive. None of the strains took up 55Fe complexed with enterobactin or with pyoverdins from Pseudomonas aeruginosa ATCC15692 (PAO1) and Pseudomonas fluorescens ATCC17400.

Item Type: Journal Article
Murdoch Affiliation: School of Biological and Environmental Sciences
Publisher: Springer Verlag
URI: http://researchrepository.murdoch.edu.au/id/eprint/19496
Item Control Page Item Control Page