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Lacrimation and nasal secretion during attacks of cluster headache appear to be
due to massive trigeminal-parasympathetic discharge. In addition, the presence
of oculo-sympathetic deficit and loss of thermoregulatory sweating and flushing
on the symptomatic side of the forehead indicate that the cervical sympathetic
pathway to the face is injured in a subgroup of cluster headache patients. In this
review, it is argued that a peripheral rather than a central lesion produces signs
of cervical sympathetic deficit, probably resulting from compression of the sym-
pathetic plexus around the internal carotid artery. Although trigeminal-parasym-
pathetic discharge appears to be the main trigger for vasodilation during attacks,
supersensitivity to neurotransmitters such as vasoactive intestinal polypeptide,
together with release of sympathetic vasoconstrictor tone, may boost facial blood
flow in patients with cervical sympathetic deficit. In addition, parasympathetic
neural discharge may provoke aberrant facial sweating during attacks in patients
with cervical sympathetic deficit. Although neither trigeminal-parasympathetic
discharge nor cervical sympathetic deficit appears to be the primary trigger for
attacks of cluster headache, these autonomic disturbances could contribute to the
rapid escalation of pain once the attack begins. For example, a pericarotid inflam-
matory process that excites trigeminal nociceptors might initiate neurogenic
inflammation and trigeminal-parasympathetic vasodilation. To complete the loop,
neurogenic inflammation and trigeminal-parasympathetic vasodilation could
provoke the release of mast cell products, which aggravate inflammation and
intensify trigeminal discharge.  
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Introduction

 

Autonomic disturbances—namely lacrimation, con-
junctival injection, nasal congestion and secretion,
facial sweating, eyelid swelling, miosis and ptosis—
feature so frequently and prominently during
attacks of cluster headache that they form part of the
diagnostic criteria for this disorder (1). Lacrimation
and nasal secretion are probably due to massive
trigeminal-parasympathetic discharge (2–4). In a

subgroup of patients the pupil constricts and the
eyelid droops on the painful side, both classic signs
of ocular sympathetic paralysis (2, 3). The persis-
tence of these ocular signs between attacks and
sometimes even between bouts (5–9) implies that
cervical sympathetic fibres have been injured. Since
thermoregulatory facial sweating and flushing are
also mediated by sympathetic neural discharge (10),
it is not surprising that these responses are compro-
mised on the symptomatic side of the forehead in
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cluster headache patients with signs of oculo-
sympathetic deficit (9, 11). Paradoxically, however,
sweating increases on the painful side of the fore-
head during attacks (12) and blood flow increases
substantially around the painful eye (13),  imply-
ing that a pathological mechanism evokes these
responses.

The present review addresses the following
points:

 

•

 

A peripheral rather than a central lesion produces
signs of cervical sympathetic deficit in patients
with cluster headache.

 

•

 

Trigeminal-parasympathetic discharge triggers
increases in facial blood flow during attacks.

 

•

 

Supersensitivity to parasympathetic neurotrans-
mitters, together with release of sympathetic vas-
oconstrictor tone, boosts facial flushing during
attacks in patients with cervical sympathetic deficit.

 

•

 

Parasympathetic rather than sympathetic neural
discharge provokes excessive facial sweating dur-
ing attacks in patients with cervical sympathetic
deficit.

 

Involvement of the cervical sympathetic 
pathway in cluster headache

 

Hypothalamic and brainstem neurons that control
sympathetic activity in the face synapse with pregan-
glionic sympathetic neurons in the upper part of the
spinal cord. Most preganglionic pupillary fibres leave
the spinal cord through the first thoracic root,
whereas sudomotor and vasomotor fibres leave
below this level. The preganglionic fibres then ascend
to synapse with postganglionic sympathetic neurons
in the superior cervical ganglion. Postganglionic
fibres to the eyes and forehead form a plexus around
the internal carotid artery, whereas fibres to lower
parts of the face follow the external carotid artery.
These fibres periodically leave the blood vessels to
join peripheral nerves that project to target tissues.

This anatomical arrangement means that injury at
different sites produces distinct patterns of auto-
nomic disturbance. For example, an injury to central
sympathetic neurons that project to the Edinger-
Westphal nucleus in the brainstem (14), or to pregan-
glionic sympathetic fibres in the first thoracic root,
generally disrupts ocular sympathetic activity but
does not affect vasomotor or sudomotor reflexes in
the face (10, 15). Similarly, a paratrigeminal lesion in
the middle cranial fossa that disrupts oculosympa-
thetic outflow would spare sudomotor fibres that
have already left the internal carotid plexus to join
the ophthalmic nerve (16). Conversely, a lesion
below the first thoracic root may interrupt sweating

and flushing on one side of the face but generally
spares pupillary reflexes. This pattern of autonomic
deficit is seen after sympathectomy at the T

 

2-3

 

 level
(15, 17) and in patients with harlequin syndrome
(18). Injury to the plexus around the internal carotid
artery inhibits ipsilateral pupillary reflexes and ther-
moregulatory responses in the medial part of the
forehead but not in lower parts of the face, whereas
injury proximal to this point blocks sympathetic
activity on the entire side of the face and the ipsilat-
eral upper limb (10, 19–21). This helps to narrow
down the site of sympathetic lesion in cluster head-
ache, because sudomotor and vasomotor distur-
bances appear to be greatest in the upper half of the
face in patients with ocular signs of sympathetic
deficit (5, 9, 11). Moreover, sweating and vascular
responses are symmetrical in the hands of cluster
headache patients (12, 22), seemingly ruling out a
lesion proximal to the superior cervical ganglion. In
sum, the sympathetic lesion in cluster headache
appears to involve the intracranial part of the cervi-
cal sympathetic pathway, most likely in the cavern-
ous sinus region or carotid canal.

 

Ocular sympathetic deficit

 

Most studies of ocular sympathetic deficit in cluster
headache concur that postganglionic sympathetic
neurons are compromised. In patients with clear
signs of ocular sympathetic deficit, and even in some
with no obvious deficit, pupillary dilation to sub-
stances such as tyramine and hydroxyamphetamine
is reduced on the symptomatic side (5, 6, 8, 9, 17).
Since these substances release noradrenaline from
postganglionic sympathetic neurons, diminished
pupillary dilation implies that adrenergic stores are
low and that at least some of the neurons are injured
or dead.

Although attacks of cluster headache almost
always affect just one side of the head, they occasion-
ally switch sides between bouts or even within the
same bout (23, 24). In such cases, it is not surprising
to find evidence of ocular sympathetic deficit bilat-
erally or on the side that is currently asymptomatic.
However, it has been suggested that ocular sympa-
thetic deficit generally extends to the asymptomatic
side in patients with cluster headache. For example,
pupillary dilation to corneal stimulation at the
patient’s pain threshold was found to be attenuated
bilaterally during the active phase of the cluster
headache cycle, particularly on the symptomatic
side (25). These findings were taken as evidence of
bilateral (presumably central) sympathetic deficit in
cluster headache. However, a decrease in stimulus
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intensity may also account for these findings,
because the corneal pain threshold fell during bouts;
moreover, pupillary dilation varied in proportion to
stimulus intensity. In other reports, pupillary dila-
tion to painful stimulation elsewhere in the body
was attenuated on the symptomatic side during the
cluster period (26), was greater bilaterally in asymp-
tomatic cluster headache patients without signs of
ocular sympathetic deficit than in controls (27), or
was no different between patients and controls, irre-
spective of whether patients were in the active phase
of the headache cycle or in remission (28). These
inconsistent findings may be due, at least in part,
to variation among samples in the proportion of
patients with signs of ocular sympathetic deficit.

Mechanisms other than ocular sympathetic deficit
may also influence pupillary responses in patients
with cluster headache. For example, Fanciullacci
et al. (29) found that brief electrical stimulation of the
infratrochlear nerve induced an ipsilateral, slowly
developing, long-lasting, non-cholinergic miosis
in control subjects. Miosis also developed on the
asymptomatic side in cluster headache patients, but
was attenuated on the symptomatic side during
bouts. Fanciullacci et al. speculated that the miosis
was due to antidromic release of neuropeptides from
trigeminal nerve endings; if so, recurrent attacks
might deplete neuropeptide stores. Indeed, levels of
calcitonin gene-related peptide (CGRP) and vasoac-
tive intestinal polypeptide (VIP) increase substan-
tially in venous jugular blood during attacks (4).
Tassorelli et al. (28) reported that miosis developed
bilaterally in controls after several minutes of hand
immersion in painfully cold water, and that intra-
muscular injection of 0.4 mg naloxone, an opioid
antagonist, blocked this response. In contrast, miosis
did not develop in either eye of patients during the
cold-water immersion at any stage of the cluster
headache cycle, except in patients who were given
the naloxone injection. These findings indicate that
cluster headache is associated with altered opioid
control of pupillary activity, and suggest that a dis-
turbance in central opioid release disrupts auto-
nomic activity (and possibly also inhibitory pain
modulation) in cluster headache patients. The per-
sistence of the opioid disturbance during remission
suggests that it might increase vulnerability to bouts
of cluster headache, although some other factor must
be responsible for actually triggering attacks.

 

Sympathetic control of facial blood flow

 

Tonic sympathetic vasoconstrictor discharge nor-
mally limits the flow of blood through the facial

microcirculation. When this inhibitory effect is
removed, increases in cutaneous blood flow are
greater in the cheek, nose, lips and ears than in the
forehead (30–32). Release of sympathetic vasocon-
strictor tone may boost blood flow in and around the
symptomatic eye during attacks of cluster headache,
because increases in peri-orbital temperature are
greatest in patients with signs of ocular sympathetic
deficit (3).

Increases in facial blood flow during body heating
far outweigh the modest increase in blood flow
caused by passive release of vasoconstrictor tone
(32) (Fig. 1). This active vasodilator mechanism is
thought to involve the release of neurotransmitters
from sympathetic nerves that innervate sweat
glands and possibly also the blood vessels that
supply these glands. Kellogg et al. (33) studied the
mechanism of this thermoregulatory response in the
forearm of healthy human subjects. Atropine pre-
treatment blocked increases in cutaneous blood flow
provoked by the local administration of acetylcho-
line (indicating that the only functional vascular
receptors for acetylcholine were muscarinic).

 

Figure 1

 

Effect of a preganglionic cervical sympathetic lesion 
on thermoregulatory facial flushing. Preganglionic 
sympathetic neurons on the right side of the neck were 
injured during an operative procedure, producing miosis and 
ptosis. Despite release of sympathetic vasoconstrictor tone, 
the right side of the face remained relatively pale during body 
heating compared with the left. This indicates that the 
operative procedure interrupted an active sympathetic 
vasodilator mechanism that mediates thermoregulatory facial 
flushing. The active vasodilator mechanism appears to 
involve vasoactive intestinal polypeptide, histamine and 
nitric oxide. Reproduced by permission of Oxford University 
Press from Drummond and Lance (10).
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Increases in blood flow during body heating per-
sisted after sweating had been abolished with atro-
pine (indicating that active cutaneous vasodilation
did not require activation of muscarinic cholinergic
receptors). However, botulinum toxin prevented
increases in cutaneous blood flow during body
heating (indicating that a substance released from
cholinergic neurons promoted active cutaneous
vasodilation).

Nitric oxide appears to contribute to active cuta-
neous vasodilation, but does not account completely
for this response (34). In particular, microdialysis of
the nitric oxide synthesis inhibitor L-NAME in skin
pretreated with atropine blunted but did not abolish
the increase in cutaneous forearm blood flow during
body heating (35). Bennett et al. (36) has recently
reported that the VIP analogue VIP

 

10-28

 

 attenuated
increases in cutaneous blood flow during body heat-
ing. In a similar vein, Wong et al. (37) found that
antagonism of the H

 

1

 

 histamine receptor attenuated
increases in cutaneous blood flow during body heat-
ing. As well as direct actions on vascular VIP recep-
tors, VIP acts on mast cell receptors to release
histamine; furthermore, both VIP and histamine
stimulate the production of nitric oxide from tissues
such as the vascular endothelium which, in turn,
relaxes vascular smooth muscle (38). Taken together,
these findings suggest that an interaction between
VIP, histamine and nitric oxide contributes to ther-
moregulatory flushing.

Active sympathetic vasodilation is unlikely to
mediate increases in facial blood flow during attacks
of cluster headache, at least in patients with cervical
sympathetic deficit. However, as discussed below,
supersensitivity to VIP in this subgroup of patients
could boost trigeminal-parasympathetic vasodila-
tion, and may thus contribute to autonomic distur-
bances during attacks.

 

Trigeminal-parasympathetic involvement in 
cluster headache

 

Painful stimulation of the eyes, mouth, nose and
facial skin triggers parasympathetic reflexes, result-
ing in vasodilation, lacrimation, rhinorrhoea and sal-
ivation. Trigeminal nociceptive neurons that supply
intracranial arteries and facial tissues relay in the
brainstem with parasympathetic neurons that travel
with the facial and glossopharyngeal nerves to the
sphenopalatine and otic ganglia (Fig. 2). Postgangli-
onic parasympathetic fibres innervate facial glands,
the blood vessels of these glands, the cutaneous
microvasculature surrounding the eyes and mouth,
and large intracranial arteries. In humans, injection

of capsaicin into the skin of the forehead provokes
pain and dilation of the internal carotid artery above
the level of the internal carotid siphon, similar to
changes noted during attacks of cluster headache
(39). These findings complement experimental stud-
ies in animals, which demonstrate that nociceptive
stimulation of cranial tissues provokes trigeminal-
parasympathetic vasodilation in the intracranial
circulation (40).

Like the active sympathetic vasodilator mecha-
nism, parasympathetic vasodilation is mediated by

 

Figure 2

 

Neural pathway for trigeminal-parasympathetic 
vasodilation and lacrimation. Trigeminal nociceptive neurons 
(V

 

1

 

) supply facial tissues (the eyes, mouth, nose and skin) and 
intracranial arteries. They relay in the superior salivatory 
nucleus (SSN) of the brainstem with parasympathetic neurons 
that emerge from the brainstem in the facial nerve (CrN7) and 
project through the greater superficial petrosal (GSP) and 
Vidian nerves (VN) to synapse with postganglionic 
parasympathetic neurons (P) in the sphenopalatine ganglion 
(SPG). Postganglionic parasympathetic fibres loop back 
through orbital rami (OR) to the cavernous sinus before 
projecting to the lacrimal glands (LG) and nearby blood 
vessels (FA). Mini-ganglia in the internal carotid canal and 
cavernous sinus might also supply the internal carotid artery 
with parasympathetic fibres. The parasympathetic supply to 
much of the lower part of the face leaves the brainstem with 
the glossopharyngeal nerve and travels to the otic ganglion, 
which distributes postganglionic fibres to target tissues in and 
around the mouth (pathway not shown). Postganglionic 
sympathetic fibres (S) originate in the superior cervical 
ganglion (SCG) and form a plexus around the internal (IC) 
and external carotid arteries (EC) before branching off to join 
cranial nerves. They ultimately supply facial sweat glands 
(SG) and arterioles (FA). Sympathetic and parasympathetic 
neurons employ vasoactive intestinal peptide and nitric oxide 
to dilate blood vessels. Sympathetic fibres that follow the 
internal carotid artery through the carotid canal may be 
compressed when the blood vessel swells during attacks of 
cluster headache. Collateral sprouts from parasympathetic 
fibres then grow into vacated sympathetic pathways and 
make functional connections with sweat glands and blood 
vessels in the forehead. Reproduced by permission of Oxford 
University Press from Drummond and Lance (10).
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VIP and nitric oxide (41, 42). This increases the pros-
pect that collateral parasympathetic fibres make
functional connections with sympathetically dener-
vated VIP receptors after injury to sympathetic
fibres. As discussed below in the section on patho-
logical sweating and flushing, this process could
contribute to autonomic disturbances in cluster
headache.

Levels of the powerful neuropeptide vasodilator
CGRP increase in jugular venous blood during
attacks of cluster headache (4). Similarly, levels of
CGRP rise in jugular venous blood during thermo-
coagulation of the trigeminal ganglion (43), pre-
sumably due to antidromic discharge of trigeminal
sensory afferents and release of CGRP from periph-
eral nerve terminals. During trigeminal thermo-
coagulation, flushing develops in the cutaneous
distribution of the division being coagulated (44).
This flush is associated with an increase in facial
blood flow and temperature (45), similar to changes
observed during attacks of cluster headache (13, 46).
The flush during trigeminal thermocoagulation (45)
and cluster headache (13) spreads well away from the
forehead and mouth, i.e. well outside the distribution
of trigeminal-parasympathetic vasodilator reflexes
(47, 48). Trigeminal neurogenic vasodilation probably
supplements trigeminal-parasympathetic vasodila-
tion both in the facial microcirculation and in large
intracranial vessels during attacks of cluster head-
ache. Moreover, a neurogenic inflammatory response
that triggers perivascular oedema might injure sym-
pathetic fibres in the carotid canal during attacks of
cluster headache. This possibility is addressed fur-
ther in the concluding section of this review.

 

Pathological sweating and flushing

 

Pathological gustatory sweating and flushing in
Frey’s syndrome involves the growth of parasympa-
thetic nerve endings into sites previously occupied
by sympathetic nerves. As discussed below, a similar
mechanism might contribute to facial sweating
and flushing during attacks of cluster headache in
patients with cervical sympathetic deficit.

Frey’s syndrome develops months or years after
injury to a branch of the mandibular nerve that inter-
rupts the sympathetic supply of blood vessels, sweat
glands and salivary glands within the distribution of
that nerve branch. Parasympathetic fibres supply the
parotid gland and other salivary and mucous glands
with secretomotor fibres, and also supply the vas-
culature of the glands and oral region with vasodi-
lator fibres. Frey’s syndrome appears to involve
misdirected regeneration or collateral sprouting of

parasympathetic fibres into vacated  sympathe-
tic pathways. Over time, functional connections
develop between parasympathetic secretomotor and
vasodilator fibres and sympathetically denervated
sweat glands and cutaneous blood vessels, presum-
ably because similar substances are employed as
neurotransmitters. Consequently, parasympathetic
discharge provokes flushing and sweating in sym-
pathetically denervated skin, probably by exciting
sensitized VIP receptors.

More than 20 years ago, VIP was identified as the
probable mediator of vasodilation in salivary and
lacrimal glands (41) and possibly also sweat glands
(49), which are surrounded by a dense network of
VIP-immunoreactive nerve fibres (50). Nitric oxide
appears to regulate both the release of VIP from
parasympathetic nerves and postjunctional vascular
reactivity to VIP (42). VIP has been detected in cra-
nial parasympathetic ganglia (51), and nerve fibres
containing VIP and nitric oxide synthase congregate
around large proximal arteries that supply muscles,
glands, the supraorbital skin and the mucous mem-
branes of the face (52). Thus, the release of VIP and
nitric oxide from collateral sprouts of parasympa-
thetic fibres could contribute to pathological gusta-
tory flushing and sweating by acting on receptors
that previously mediated sweating and active sym-
pathetic vasodilation in the facial skin.

Although thermoregulatory flushing and sweat-
ing are impaired on the symptomatic side of the
forehead in cluster headache patients with ocular
signs of sympathetic deficit (9), sweating and blood
flow often increase in this part of the forehead dur-
ing attacks (12, 13, 46). In fact, the increase in perior-
bital blood flow during attacks of cluster headache
is greatest in patients with profuse lacrimation and
ocular sympathetic deficit (3), suggesting some par-
allels between these autonomic disturbances and
Frey’s syndrome. In support of this notion, painful
stimulation of the eye provoked sweating and
increases in blood flow on the sympathetically den-
ervated side of the forehead in cluster headache
patients with ocular signs of sympathetic deficit, and
in patients with a postganglionic sympathetic lesion
from some other cause (Table 1). Even contralateral
eye pain provoked sweating on the sympathetically
denervated side of the forehead in patients with a
postganglionic lesion (17). In contrast, minor facial
sweating to eye pain was symmetrical in most
patients with a central or preganglionic sympathetic
lesion (Table 1).

The most straightforward explanation for patho-
logical lacrimal sweating and flushing is that para-
sympathetic lacrimal and vasodilator fibres make
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functional connections with VIP receptors previ-
ously supplied by sympathetic sudomotor and
vasodilator nerves. In this scenario, trigeminal-
parasympathetic discharge to the lacrimal glands
would also trigger sweating and flushing in sympa-
thetically denervated parts of the forehead. It is note-
worthy that levels of VIP increase substantially in
jugular venous blood during attacks of cluster
headache (4), consistent with massive trigeminal-
parasympathetic discharge.

The forehead sweat glands of cluster headache
patients are supersensitive to cholinergic substances
(11), as are the sweat glands of at least a subgroup
of patients with postganglionic cervical sympathetic
deficit from some other cause (53). This supersensi-
tivity may enhance pathological lacrimal sweating
to eye pain, and sweating during attacks of cluster
headache. Sympathetic denervation boosts the vaso-
dilator response to eye pain, irrespective of the site
of lesion in the cervical sympathetic pathway (17).
This vascular supersensitivity (presumably to VIP)
could enhance trigeminal-parasympathetic vasodi-
lation during attacks of cluster headache in patients
with sympathetic deficit.

 

Possible mechanisms of autonomic 
disturbance in cluster headache

 

As outlined above, neurogenic vasodilation and
trigeminal-parasympathetic discharge during
attacks of cluster headache could trigger glandular
secretions, increase blood flow around the affected
eye and induce vasodilation of large intracranial
arteries. Pain generally precedes autonomic distur-
bances during attacks and escalates within a few
minutes from a niggling sensation to intense pain
(13). Thus, recruitment of secondary autonomic dis-
turbances may cause pain to build up in a positive
loop. A working model of this process is described
below.

The intracranial segment of the internal carotid
artery is supplied by parasympathetic fibres that
originate in mini-ganglia in the carotid canal and
cavernous sinus, and by trigeminal sensory fibres
that pass through or synapse in these ganglia (54).
An inflammatory process that excites these perica-
rotid trigeminal nociceptors might trigger neuro-
genic inflammation and trigeminal-parasympathetic
dilation of the internal carotid artery in cluster head-
ache (54, 55). Since mast cells have receptors for
neuropeptides, release of CGRP and VIP during
trigeminal-parasympathetic discharge could liberate
mast cell products that aggravate inflammation
and intensify trigeminal discharge. The vicious circle
between autonomic disturbances and pain may con-
tinue until mast cell products are depleted, trige-
minal discharge is suppressed by an endogenous
pain control mechanism, or the trigeminovascular
response fatigues.

Although it would be difficult to investigate
intracranial mast cell populations in cluster head-
ache patients, mast cells in skin biopsies taken from
the temples show signs of increased degranulation
(56–58). It is interesting to note that sympathetic vas-
oconstrictor activity suppresses neurogenic vasodi-
lation (59), and that catecholamines inhibit mast cell
degranulation (60); thus, release of sympathetic
vasoconstrictor tone in patients with cervical
sympathetic deficit could enhance vasodilation and
promote the release of mast cell products. Cervical
sympathectomy increases mast cell density and
histamine content in the rat dura mater, possibly
because of increased production of nerve growth fac-
tor in sympathetically denervated tissues (61). Thus,
cervical sympathetic deficit may cause mast cells to
congregate around cranial blood vessels in cluster
headache.

Many years ago, Gardner et al. (62) demonstrated
that surgical resection of parasympathetic fibres in
the greater superficial petrosal nerve prevented
lacrimation during attacks of cluster headache. If
peripheral trigeminal nociceptor discharge triggers
this parasympathetic reflex, then trigeminal block-
ade or surgical resection of the trigeminal root
should also prevent lacrimation during attacks.
However, cyclical parasympathetic disturbances
with or without headaches occasionally persist after
trigeminal surgery (63), suggesting that parasympa-
thetic disturbances might be triggered centrally dur-
ing attacks of cluster headache, and not necessarily
by trigeminal activity. In addition, cyclical auto-
nomic dysfunction without headache occasionally
precedes (64) or follows typical bouts of cluster
headache (65). Although such observations suggest

 

Table 1

 

Prevalence of lacrimal sweating in patients with 
cervical sympathetic deficit

Lacrimal sweating

 

a

 

 

Present Absent

Central sympathetic lesion 0 3
Preganglionic lesion 1 10
Postganglionic lesion (7 

with cluster headache)
13 0

 

a

 

Sweating was provoked in the sympathetically denervated
region of the forehead by painful stimulation of the eye (17).
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that a central generator (e.g. in the hypothalamus)
triggers pain and autonomic disturbances indepen-
dently, a peripheral stimulus (e.g. an infection or
allergy) could also provoke episodic autonomic dis-
turbances without pain in physiologically primed
tissues. Sweating, lacrimation and nasal secretions
increase slightly on the pain-free side during attacks
of cluster headache (66), implying the involvement
of centrally mediated reflexes. However, this does
not necessarily implicate a central generator, because
peripheral nociceptive stimuli provoke weak con-
tralateral parasympathetic responses (47, 67) due
to minor crossover of trigeminal-parasympathetic
reflexes in the brainstem.

As summarized in Table 2, several lines of evi-
dence point to a lesion of postganglionic sympa-
thetic fibres in a subgroup of cluster headache
patients. Within this subgroup, parasympathetic dis-
charge may trigger pathological facial sweating and
vasodilation during attacks. It is interesting to note
that pathological gustatory sweating is sometimes
painful (68, 69), implying that parasympathetic dis-
charge can stimulate nociceptors (e.g. by increasing
production of endothelial nitric oxide, by degranu-
lating mast cells, or by direct cross-excitation of noci-
ceptive afferents). It is tempting to speculate that
parasympathetic discharge during attacks of cluster
headache provokes pain in patients with cervical
sympathetic deficit, both within intracranial vessels
and within the facial microcirculation.

Ekbom and Grietz (70) observed dilation of the
ophthalmic artery in a patient who developed an
attack of cluster headache while undergoing carotid
angiography. Local narrowing of the extradural part
of the internal carotid artery spread into the carotid
canal as the attack progressed, consistent with
oedema in the arterial wall. Notably, this patient
had ocular signs of sympathetic deficit. In contrast,
dilation of the ophthalmic artery without internal
carotid artery narrowing or ocular signs of sympa-

thetic deficit was detected by magnetic resonance
angiography in another patient during two sponta-
neous attacks (71). These observations support the
notion that perivascular oedema in the carotid canal
during attacks of cluster headache injures the peri-
carotid plexus of sympathetic nerve fibres, perhaps
due to nerve compression (54). Alternatively, an
inflammatory process in the cavernous sinus that
blocks venous drainage may damage pericarotid
sympathetic fibres (55). Consistent with these pro-
posals, dilation of the common carotid artery during
head-down tilt sometimes provoked ocular sympa-
thetic deficit and intense headache during the active
phase of the cluster headache cycle (72).

In conclusion, trigeminal-parasympathetic dis-
charge and sympathetic deficit probably do not trig-
ger attacks of cluster headache. Nevertheless, once
the attack begins, these autonomic disturbances may
contribute to the rapid escalation of pain. Attacks are
thought to be initiated by hypothalamic discharge
(40, 73), but what triggers this hypothalamic dis-
charge is unknown. One possibility is that a recur-
rent infection that produces inflammation and
vascular disturbances in the carotid sinus (55) dis-
rupts the blood supply of the hypothalamus (74). If
so, attacks of cluster headache could represent a
recurrent but futile attempt to clear away a source of
infection that threatens the brain’s blood supply.
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