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tions a = i, dl 2 do is equivalent to 

k l f ( f +  1 )  2 2 ( f -  I )  + C , ( f +  1) where6 = (f- l )a ,  

1 + 6 + ( g  + 1 ) -  . ( A . 1 0 )  
2 6)-1 

Let 4 = f - I ,  y = g - 1. Then after tedious algebra, it can be 
shown that ( A .  IO) is equivalent to the inequality 

[ -d2  - 104 - 4y + 2 y ]  42u2 
+ [34* + ~ I # I ~  -‘64 + 74 + 271 U + 2d2 2 0. ( A . l l )  

Recombining the terms of the left-hand side of ( A .  1 I ) ,  it becomes 

( y  - 4 u  - T U )  d13a + 42a[34 + y - 104a + 2 y a ]  

+ 2(r#I2 - 2 4 2 a  + y 4 a ) .  

Since 11 ho I /  = 1) go )I implies + U  = y b ,  the three terms of the above 
can be expressed as 

y - C#XX - ~ C X  = y(1  - U )  - $ U  2 y b  - 4 b  = 0, 

34 + y - 1 0 4 ~  + 2 y a  2 2 4 ( 1  - b - U )  

+ 4( l  - 2a)  + y ( l  - 2 b )  2 0, 

42 - 3d2a + r4a 2 4 ( l  - b - U )  2 0. 

The theorem is proven. The equality holds when 1) 4 = y = 0, 
i .e. ,  both Xo and Yo are white noise, or 2) a = b = 4. 
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Decorrelation Method 
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Abstract-This correspondence presents a unified feature extraction 
scheme, viz. two-dimensional (2-D) linear prediction model-based de- 
correlation method. By applying 2-D causal linear prediction model to 
decorrelate a textured image, the very heavy computation load re- 
quired when using whitening operator to decorrelate the image, or the 
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significant information loss when using gradient operator to approxi- 
matelj whiten the image ir avoided. This texture model-based decor- 
relation method provides three sets of features to perform texture clas- 
sification: the coefficients of the 2-D linear prediction, the moments of 
error residuals and the autocorrelation values. An optimum feature 
selection scheme using modified branch-and-bound method was intro- 
duced to  reduce information redundancy. After feature selection, 100 
percent classification accuracy was achieved for a 20 class texture 
problem. Experiments show that this feature extraction scheme is truly 
information lossless, effective, and fast. 

Index Terms-Feature extraction, image processing, texture analy- 
sis. 

I. INTRODUCTION 

Texture is an important characteristic used in analyzing objects 
o r  regions of interest in an image. Texture features play an impor- 
tant role in image classification and analysis. In classification, tex- 
ture features can be used to  discriminate and label areas of an im- 
age, such as crop identification in an aerial photograph, and medical 
diagnosis of an X-ray photograph. Texture features can also be 
used in scene segmentation and identification in an  image under- 
standing or computer vision system, for example, in robot vision 
and industrial inspection. Therefore, the choice of texture features 
is the key in these applications. 

Currently, there are a lot of approaches to choosing texture fea- 
tures. Some of these based on statistical techniques are: Fourier 
power spectrum [2], gray level run length [2], [6], Gray level dif- 
ference [2], gray level co-occurrence matrices [ l ] ,  [2], 171, [8], 
decorrelation method 131, and visually perceived properties [9]. 
Some of these based on parametric models are mosaic model [ lo ] ,  
autoregressive model (AR) [ I  11, [13], [22], and Markov random 
field (MRF) model 1121. [14]. 

The motivation of this correspondence is to unify the parametric 
model-based approach with the statistical technique based ap- 
proach for choosing texture features, viz. the 2-D linear prediction 
model-based decorrelation method. In the original decorrelation 
method of feature extraction [3]. there are two major disadvan- 
tages: the computation of the autocorrelation shape features, or  the 
use of a whitening operator to decorrelate the textured image, is 
computationally very expensive; some information will be lost in 
the whitening process, especially if one uses a gradient operator, 
such as the Laplacian o r  Sobel operator, to approximate the 
whitening operator. According to [ 141, the information loss is sig- 
nificant because the error residuals themselves contain only partial 
infomiation of the original image. Due to these two reasons, it is 
not viable to use a decorrelation method in any practical situation. 

A 2-D linear prediction model [15]-[17], [20] was widely used 
in  many aspects of image analysis, for example, in image coding 
[ 17) and segmentation [ IS] .  The two-dimensional autoregressive 
model, which is closely related to  2-D linear prediction model, was 
also used in texture classification [ l  I ] ,  [13], [22]. Our objective in 
this paper is to use a 2-D causal linear prediction model to whiten 
a textured image to overcome the two drawbacks in the decorre- 
lation method, thus making this feature extraction scheme much 
faster and information lossless. This can be achieved because the 
coefficients of the 2-D linear prediction model provide us with ex- 
tra and very important information about texture, and its compu- 
tation is fast. Note that the noncausal simultaneous autoregressive 
model (SAR) in [221 can also be used to whiten a textured image 
when using maximum likelihood estimation technique. However, 
the estimation of the 2-D linear prediction model involves only an 
inversion of a block Toeplitz autocorrelation matrix, and its com- 
putation is simpler and faster than the interative estimation scheme 
of the SAR model. 

A Gaussian M R F  model was also used for texture classification 
[I41 and excellent results were obtained. Although the 2-D linear 
prediction model is a special case of the M R F  model and SAR 

models under Gaussian assumption, for non-Gaussian textures, the 
probability structure of these models is different, and further prob- 
lems may be posed to these two models for non-Gaussian textures 
or  highly structured o r  macrotextures. Both [14] and [22] did not 
fully utilize information from the error field while the feature ex- 
tracted from white noise field is a key feature as we will see from 
our experiment. 

Our second modification to the original decorrelation method is 
to use autocorrelation values directly as  features, as suggested in 
[ 141. Because autocorrelation values themselves carry out enough 
texture information, it is not necessary to perform the time con- 
suming autocorrelation shape feature calculation. This further sim- 
plifies the original method. With these two major modifications, 
our feature extraction scheme has proven a much faster and more 
powerful method. It produces a true information lossless feature 
set. 

11. 2-D LINEAR PREDICTION MODELS 
Two-dimensional linear prediction models have been widely re- 

ported in the literature [15], 1171. Consider x ( m ,  r z )  as a sample 
of a 2-D sequence of intensity image with rn and n range over some 
finite lattices. The random field variable can then be represented 
by a 2-D prediction model 1151, 1171 as: 

( 1 )  x,,(rn, n )  = cc a ( k ,  j ) * x ( r n  - k ,  n - j ) + 
i l  

( h . ]  )En 

where lI represents the nonzero support region or mask for predic- 
tion coefficients a ( k , j  ); a. represents a locally constant bias coef- 
ficient added to the input. 

The prediction error is 

e ( m ,  n )  = x ( m ,  n )  - .r,,(m, n )  

= x ( m , n ) -  cc a ( k , j ) * x ( m - k . n - j ) - u o .  
h i  

( i ( . / ) E n  

( 2 )  
Suppose x ( m .  n )  is an arbitrary stationary 2-D random field, then 
to minimize the variance of the prediction error, 

E [ ( x ( m ,  n )  - x, , (m,  n ) l 2 ]  ( 3 )  
must be a minimum. 

By varying the linear prediction coefficients a ( k ,  j ), minimi- 
zation of (3) gives a set of linear equations called the Normal equa- 
tions: 

C ( p ,  4 )  - xc a ( k , j )  * C ( p  - k ,  4 - j )  
L J  

l h . i l E n  

- a. * XZ x ( r n  - p ,  n - 4 )  = 0' * 6 ( p ,  4 )  ( 4 )  
ni n 

1 m. , I  1 E w 

where 0 represents the minimum variance of the error field of the 
2-D linear prediction; 6 (  p ,  4 )  is the two-dimensional Kronecker 
delta function, W is an M X M estimation window; C( p ,  4 )  rep- 
resents the covariance Coefficients of random field { .r( m ,  n )  } which 
are estimated as: 

C ( k , j )  = cc [I(,, rz )  * ( x ( m  - k ,  n - J ) ) ] .  ( 5 )  
nt n 

I ? ? I , , !  )E w 

Solving the Normal equations, the optimum coefficients of the 2-D 
linear prediction model can be obtained. A stochastic representa- 
tion for a pixel x ( m ,  n )  is 

x ( m ,  n )  = x,(rn, n )  + e ( m .  n ) .  ( 6 )  
For a causal mask, which is either a non symmetric half plane or 
quarter plane. the error will be white noise 1221 if the prediction 
mask is made sufficiently large. The matrix of the normal equation 
is a block Toeplitz matrix which is always positive definite. There 
are many methods available for inversion of such matrices, such 
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as the Cholesky decomposition [20] or the more efficient method 
described in [ 191. Usually in image processing applications, only 
a low order prediction model is required, this means that both the 
computation time of the covariance coefficients is less, and the cal- 

TABLE 1 
CLASSIFICATION RESULTS USING THE SUB DIMENSIONAL FFATURE VECTOR 

FOR (64 x 64) SIZED SUBIMAGE 

culations of the prediction coefficients and moments of error resid- l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

uals are faster. 
There are three methods for calculating the coefficients of the 

model according to the treatment of bias, and two techniques for 
estimating the covariance coefficients [ 171. In this paper, the au- 
tocorrelation method was used to determine the range of summa- 
tion in ( 5 ) .  It is assumed that the data are zero outside the ( M  x 
M )  estimation window. The local mean linear prediction approach 
[17] was employed to calculate the coefficients of the 2-D linear 
prediction. The local mean of the data over the ( M  X M )  estima- 
tion window is estimated, and is subtracted from every pixel within 
the ( M  X M )  frame. The coefficients of the 2-D linear prediction 
model are then obtained by solving the normal equations (4) with- 
out bias. 

111. CLASSIFICATION SCHEME 

~ ~~ 

1 1 6 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 

2 0 1 6 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 

3 0 0 1 6 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 1 6 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 1 5 0 0 0 0  0 0 0 0 0 0 0 1 0  0 0 

6 0 0 0 0 0 1 4 0 0 0  0 0 0 0 0 2 0 0 0 0 0 

7 0 0 0 0 0 0 1 6 0 0  0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 1 0 0 1 4 0  0 0 0 0 0 1 0  0 0 0 0 

9 0 1 0 0 0 0 0 0 1 5  0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 1 6  0 0 0 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 0 0 0  0 1 6  0 0 0 0 0 0 0 0 0 

1 2 0 0 0 0 0 0 0 0 0  0 0 1 5  0 0 0 0 0 0 1 0  

1 3 0 0 0 0 0 0 0 0 0  0 0 0 1 6  0 0 0 0 0 0 0 

1 4 0 0 0 0 0 0 0 0 0  0 0 0 0 1 6  0 0 0 0 0 0 

In this application, a 3 X 3 quarter-plane prediction mask, i .e. ,  15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 

an 8th order2-D linearprediction model, was chosen. The 8 coef- 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 

ficients of the 2-D linear prediction and the moments of error re- 17 0 O O O 1 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 

siduals were chosen as features. The features that were derived 18 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 

from the error residuals are: variance /3, skewness, and Kurtosis 19 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 O 0 0 16 0 

[3], [18]. As the coefficient s o f t  h e 3  X 3 quarter-plane2-Dlinear 2o O O O O O O l6 

prediction were extracted from autocorrelation values C ( K ,  j ), 

formation contained in these There is no point in choosing 
these autocorrelation values as features. Therefore the additional 
autocorrelation values C ( K .  i ( K  = -3. 3. i = 0. 1. 2: K = -3. 

with K = -2, -1 ,  . . . 2,  and j = 0, 1, 2, they cover most in- M;sclass$cation: 8 out of 320. 
Note: NudXx's 1-20 represent D68, D9, D84, D24, D19. D92. D12, 

D112, D29, D17, D4, D57, D77, D36, D38, D15, D2, D65, D3, D95 in 
Brodatz, respective,y, 

~ " , ~  

-2 ,  . . . 3,  j = 3 )  required for 4 X 4 quarter-plane 2-D linear 
prediction were chosen as features. Since C( -3, 0 )  = C ( 3 ,  O ) ,  
there were only 12 autocorrelation values. These values were nor- 
malized by dividing by C(0,  0 )  as suggested in [14]. The above 
three sets of features give a feature vector with 23 components. 

Having chosen features, we can adopt a Bayes decision rule o r  
other standard rules for classification. A minimum distance clas- 
sifier [14], [22] was chosen because of its simplicity and less com- 
putation requirements, which is especially important in the later 
feature selection stage. It can be described as 

n 

d ( X ' " ,  i )  = c [ X ' " ( f )  - p y f ) ] 2 / ( 7 ( f ) ( f ) .  ( 7 )  
f = l  

First, the feature mean P I ' ) (  f )  and variance U ( ' ) (  f )  were calcu- 
lated for each feature componentf(  f = 1, 2, . . . n ,  n is feature 
dimension) of every class i ( i  = 1, 2 ,  . . . K ,  K is class number). 
A "leave-one-out" strategy was adopted, i .e. ,  to take out a spe- 
cific feature vector from a class as test sample X " ) ,  the remaining 
feature vectors in that class and all the feature vectors in other 
classes were used to train the classifier, i .e . ,  the mean p ( f )  and 
variance a( f )  were recomputed for that class using the remaining 
feature vectors from it. After calculating distance from X ( ' )  to every 
class, the test sample Xi') was then assigned to a class i* for which 
the distance in (7) is a minimum. This was repeated for every sam- 
ple of each class. 

IV. EXPERIMENT RESULTS 
We often find that many feature extraction schemes perform 

classification well, but with only a small group of textures. When 
texture classes are increased, especially when macrotextures are 
included, the classification accuracy drops quite a lot. Therefore, 
in our experiment, we chose 20 classes of textures from Brodatz 
[4], including both microtextures and macrotextures, to test ro- 
bustness of our scheme. The number of these textures are: D68, 
D9, D84, D24, D19, D92, D12, D112, D29, D17, D4,  D57, D77, 
D36, D38, D15, D2, D65, D3, D95. Each texture was digitized 
into a ( 5  12 X 5 12 ) image by a PC vision board installed in an IBM 

AT computer. These images were further reduced to a (256  X 256)  
resolution by averaging every four pixels. Each image was then 
subdivided into 16 subimages of ( 6 4  X 6 4 )  size with one column 
overlap. Thus each texture class had 16 samples. 

In order to make feature vector invariant to illumination changes, 
hence increasing classification accuracy, some commonly used 
preprocessing techniques were adopted. First, a histogram equali- 
zation over each subimage was performed. Then normalizing cach 
subimage into a zero empirical mean and unit empirical variance 
was carried out. After preprocessing, the feature vectors mentioned 
in Section 111 were calculated. Classification experiment was con- 
ducted using these 23 features and minimum distance classifier. 
The results are shown in Table I. Classification accuracy is 97 .5  
percent. 

V .  FEATURE SELECTION 
From experimental results we can see that our feature extraction 

scheme is powerful. But there still exist some problems: the infor- 
mation contained in the feature set is redundant, and some features 
in the set make classification accuracy worse, instead of making a 
contribution to it; the feature dimension is still too high. High di- 
mension requires longer computation time and more memory space, 
it also makes the design of the classifier difficult if one wants to 
use an advanced classifier, such as the Bayes classifier in [22]. 
Furthermore it makes classification process slow, and not suitable 
for real time identification. Also, in some cases one might want 
classification accuracy as high as possible, for example, in medical 
diagnosis. For all above reasons, it is necessary to design an op- 
timal feature selection scheme to reduce the feature dimension. Al- 
though the computation might be heavy in this process, because i t  
is an off-line computation, once optimum feature set has been 
found, the calculation of this set and classification using this set 
will be much faster. 

The computation of minimum distance classifier is simple and 
fast, we use therefore this classifier with "leave-one-out'' strategy 
directly in our feature selection scheme to reduce the heavy com- 
putation load during feature selection process. 
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Define a binary-valued solution vector A as  

where I I  is equal to the feature dimension and t represents the vector 
transposition. 

The minimum distance classifier can be transformed into the fol- 
lowing expression: 

where uI = 1 means that t h e j t h  feature component has been se- 
lected; a ,  = 0 means it has been excluded. 

Define an assignment matrix A F .  for test data x ' ' )  of class k ( k  
= I ,  2 ,  . . . 20) .  If the i th  distance d ( u " ' ,  i )  is minimum, then 
the i th  column in the kth row will be increased by one, i.e., assign 
class k to class i. Thc diagonal elements of A F  will then represent 
the number correctly classified. The total classification accuracy 
will be the trace of A F .  T R ( A F ) .  The feature selection problem 
now becomes: to find the value of vector A to maximize T R ( A F ) .  
Obviously, this is a zero-one unconstrained nonlinear integer pro- 
gramming problem. A modified branch-and-bound algorithm was 
designed to solve this problem efficiently. The algorithm is as fol- 
lows. 

Step 1: For each of the present branches, set CJ,  = 0 f o r j  = 1, 
2 ,  . . . I I ,  and j not being included in the branch record, calculate 
the corrcsponding TR ( A F  ) and store it in a matrix B which records 
both the branch which is under processing and the classification 
accuracy aftcr the j t h  component of features is masked off in that 
branch, i.e.,  let [ I ,  = 0. So each present branch has many sub- 
branches. 

Srep 2: Find the maximum classification accuracy of all the sub- 
branches just obtained and stored in matrix B .  

Step 3: If the maximum classification accuracy of the sub- 
branches is larger than or  equal to that of the present branch then 
continue to Step 4, else stop. 

Step 4: The maximum classification accuracy is used as the low 
bound. Any subbranch which has classification accuracy lower than 
the maximum will be discarded. The branch record will record only 
the subbranches which have maximum classification accuracy. Go 

The schematic diagram of this algorithm is represented by the 
tree in Fig. 1. 

Note that branches aI, a,,, a?, a,,, a , ,  a? and a l .  a?, a,, represent 
the same set of features. So at each branch level, those branches 
which represent the same set of features but with different feature 
sequence should be reduced to one branch so as to  increase com- 
putation efficiency. 

Comrnent: This algorithm is a tradeoff between branch-and- 
bound algorithm and sequential backward selection (SBS) algo- 
rithm [21]. It overcomes the large amount of computation still re- 
quired in the branch-and-bound algorithm, thus making i t  compu- 
tationally feasible. and it also partially eliminates the drawbacks in 
the SBS algorithm. i .e . ,  once some feature components have been 
discarded, it does not allow any revision of their merit. In the pre- 
sented algorithm, if a feature component is discarded in one branch, 
it can be assessed by other branches. Therefore the algorithm will 
get optimum or near-optimum feature sets. 

Above feature selection scheme was applied to the 23 dimen- 
sional feature vectors calculated in Section IV. Nine optimum fea- 
ture sets were obtained with feature dimension of 13, 12, I I ,  I O ,  
9. respectively, each with 100 percent classification accuracy. 

During the feature selection process. the classification accuracy 
was nondecrease until reaching 100 percent. When proceeded fur- 
ther after reaching 100 percent accuracy with dimension of 9, the 
accuracy decreased monotonically. Hence, we got a group of key 
features (from most important to least important): a [ O ,  I], Kur- 
tosis. C [ 2 ,  31, C [  -3, 21. a [ O ,  2 ) .  a I 2 ,  01. Taking out any one 
of these will make significant decrease of classification accuracy. 

to Stcp 1. 

a = O  92 a.=O =o 

= O  
n -  I 

Fig. 1 .  Modified branch-and-bound 

In order to choose the best feature set from the nine groups, the 
same 20 classes of textures in Brodatz album were resampled with 
lower illumination condition and different area. The samples in the 
first group were used to train the minimum distance classifier with 
different feature set in the nine optimum groups. The samples in 
the second group were used as test samples. Two  groups of the 
optimum feature set with dimension 13 misclassified only 2 sam- 
ples of Field stone ( D 2 )  into Bubbles (D112) .  The remaining 
groups misclassified 3 samples of D2 into DI 12, all yielding clas- 
sification accuracy of over 99 percent. This error is mainly due to  
the Field stone picture in Brodatz containing more dark holes, es- 
pecially the area near the edge of the photograph, and lower illu- 
minance condition. The best feature set, according to classification 
accuracy, is composed o f a [  I ,  01, a [ 2 , 0 ] ,  a [ O ,  I ] ,  a [  I ,  I ] ,  a [ 2 ,  
I ] ,  a [ O ,  21, 0, Skewness, Kurtosis, C (  -3, 2 ) ,  C (  -3, 3 ) ,  C ( 2 ,  
3 ) .  C ( 3 ,  0 )  o r  C ( 3 ,  1 ) .  

VI.  SUMMARY A N D  CONCLUSION 
Experimental results show that this unified method is a true in- 

formation lossless feature extraction scheme. It is more powerful 
than any single parametric model based approach o r  statistical tech- 
nique based approach. 

Because the computation of the coefficients of the 2-D linear 
prediction is fast, it is the cheapest white noise driven model, and 
therefore, makes this modified decorrelation method efficient, loss- 
less and practical. 

This scheme is suitable to a variety of textures, from microtex- 
ture to macrotextures. Therefore, it has a wide range of applica- 
tions. 

Experiments carried on an Intel 80386 CPU based computer 
Apricot VX show that the feature selection scheme given in this 
correspondence is suitable to  feature dimension less than 30 with 
20 classes. For higher feature dimension, one needs either to divide 
the feature vector into several groups o r  use a higher performance 
computer. 
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Efficient Parallel Algorithms for Image Template 
Matching on Hypercube SIMD Machines 

V. K. PRASANNA KUMAR A N D  VENKATESH KRISHNAN 

Abstract-In this correspondence, we present efficient parallel al- 
gorithms for image template matching on hypercube SIMD machines 
of sizes N’,  N’ x M’, and N 2  x K’ processing elements. For an N X 

N image and M x M window with N *  PE’s, we present a simple optimal 
parallel algorithm with O(M’  + log N )  time. The N’ X M’ PE’s case 
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is solved in 0 ( l o g  N )  time and the N’ x K 2  PE’s case is solved in 
U ( M 2 / K 2  + log N )  time. We also design a parallel algorithm for the 
N 2  PE’s case using constant space/PE which runs in 0 ( M 2  * log* ( M  ) 
+ log N )  time. All these algorithms have superior time performance 
compared to known results. 

Index Terms-Hypercube, image processing, parallel algorithm, 
template matching. 

I. INTRODUCTION 
Template matching is a basic operation in image processing and 

computer vision. It is used as a simple method for filtering, edge 
detection, image registration, and object detection. Template 
matching can be described as comparing a template (window) with 
all the possible windows of the image. Each position of the image 
will store the result of the window operation for which it is the top- 
left corner. Let IMAGE(i, j )  represent an N X N image where i, 
j E [0, N - I ] .  Let W ( s ,  t )  represent the template where s, t E 
[0, M - 11. Then the result C ( i ,  j ) ,  0 5 i ,  j I N - 1 is as given 
below: 

M - l  M - I  

C(i, j )  = c IMAGE(( i  + s) mod N ,  ( j  + t )  
c = o  r = o  

. mod N )  * W ( s ,  t ) .  ( 1 )  

Note that the computation can be done in O ( N 2  X M 2 )  time 
using a uniprocessor. 

In this correspondence, we develop simple efficient parallel al- 
gorithms for template matching on hypercube arrays of various 
sizes. The results include image template matching on a hypercube 
with N 2  PE’s in O ( M 2  + log N )  time. The storage space available 
in each PE is assumed to be O ( M ) .  We also present an algorithm 
for a hypercube with N’ X M 2  PE’s taking O ( l o g  N )  time. This 
assumes constant storage space in each PE. The N 2  X K 2  PE’s 
algorithm is implemented in O ( M 2 / K 2  + log N )  time. The stor- 
age in each PE is O ( M / K ) .  We also show that these algorithms 
are optimal. Previous time bounds for the above three cases are 
O ( M  * max ( M ,  log N ) ) ,  O ( l o g  N * log M ) ,  and O ( M Z / K 2  + 
(log N * log K ) ) ,  respectively [ l ] ,  [2]. We also design a parallel 
algorithm for the N’ PE case using constant space/PE which runs 
in O ( M ’  * log* ( M )  + log N ) ’  time. This is an attractive algo- 
rithm if the window size is large. The main contribution of this 
paper is in designing simple elegant parallel algorithms for tem- 
plate matching. These results improve on the best known bounds 
in the literature [ l ] ,  [ 2 ]  and most of the solutions are optimal. 

This correspondence is organized as follows. In the next section, 
we define the hypercube architecture and discuss some of its useful 
properties. We also define some data movement operations which 
will be used in our parallel algorithms. Section I11 deals with par- 
allel algorithms for various cases and their optimality . Conipari- 
sons to known results are made in the last section. 

11. A HYPERCUBE SIMD MODEL 
A hypercube SIMD computer is comprised of N = 2” processing 

elements (PE’s), each having some local memory. The PE’s are 
indexed 0 through N - 1 and the pth PE is referred to as PE ( p ) .  
All the PE’s are synchronized and operate under the control of a 
single instruction stream. The PE’s have enable/disable masks and 
a subset of PE’s can be made to execute an instruction. The set of 
enabled PE’s can be changed from instruction to instruction. Each 
PE has a local memory of size I ,  an ALU, a memory address reg- 
ister, temporary registers, a mask bit register, and an index regis- 
ter. The index register of PE ( p )  stores the index p of the PE. 

The PE’s are interconnected to provide inter-PE communica- 

‘log* M = min { KI log log log . . . K times ( M )  5 I } 
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