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Abstract: Border following is widely used in the 
preprocessing of many binary images. Images may 
be taken to consist of a set of black objects on a 
white background, or vice versa, and the objects 
may have holes in them; some of the holes may 
contain objects, and this may be repeated. Finding 
the borders of the objects allows considerable 
compression and has other advantages, but is 
more difficult than may appear at first sight. In 
particular, it is not dificult to obtain algorithms 
which produce reentrant curves as candidate 
borders, and others which produce borders which 
are unsatisfactory for various reasons. The paper 
describes a co-recursive algorithm obtained from a 
new definition of borders. Because of some 
counter-intuitive aspects of the subject, it was 
necessary to prove that the algorithm produces a 
border in the sense of the paper. Experiments on a 
variety of images are described, and the results 
show that the borders described in the paper are 
generally smaller and better connected than some 
others. 

1 Introduction 

Border-following techniques have a wide variety of appli- 
cations, including picture recognition, topological 
analysis, object counting and image compression. The 
present work arose from the reconstruction of biomedical 
objects from images of sections; such images pose a 
severe test for border-following algorithms, partly 
because of the complex shape of the boundaries, and 
partly because noise often remains after the common 
noise-reduction techniques have been applied. 

We may define a border-following algorithm by suppos- 
ing that a binary two-dimensional raster image is pre- 
sented to the algorithm, and some indeterminate number 
of chain code sequences, of indeterminate length, is 
output, together with some pixel on each chain code 
sequence. Not all algorithms are in precisely this form, 
but enough are equivalent to it, or are variants of it, to 
justify this as an introductory definition. Such algorithms 
have been studied by Rosenfeld and Kak [l] and Pavlidis 
[2 ] ,  who offer a variety of solutions. More recently, 
Suzuki and Abe [3] and Ly and Attikiouzel [4] have 
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described others. Kruse [SI and Danielsson [6] have 
investigated multilevel images, and methods for tracing 
three-dimensional voxel image sets have been presented 
by Toriwaki and Yokoi [7]. Chen and Siy [SI have pro- 
posed a technique which uses a priori knowledge and 
feedback to improve gradually the border extraction. 

These existing methods can find and trace outermost 
borders even when there may be several objects in the 
image; when the image contains objects having holes in 
them, and objects inside the holes, recursively several 
levels deep, the inner borders tend to be unsatisfactory, as 
may be discovered experimentally. In general, it is the 
‘hole borders’ which are incorrectly traced. This paper 
proposes a new method which avoids these deficiencies. 

As is plain from the general literature on image pro- 
cessing (e.g. Pavlidis [Z]), there are some subtleties in 
going to a discrete binary array of pixels, with naive 
expectations based on the topology of the euclidean 
plane. If, for example, we assume that two pixels of the 
same colour are adjacent if they share a common edge 
or corner, then a simple closed curve may be defined as 
a sequence of such adjacent pixels, all of the same colour, 
the first pixel and the last also being adjacent, and all 
other pixels adjacent to any pixels of the sequence being 
of the opposite colour. Unlike the corresponding case in 
the plane, however, such a simple closed curve fails to 
separate the plane into two disconnected components. 
This is one form of the connectivity paradox. So the 
reasoning about algorithms which operate on pixel 
arrays has to be done with extreme care if it is not to fall 
victim to some piece of ‘common sense’ which is in fact 
wrong: it is intuitively plausible that the boundary of an 
object has to be made up of simple closed curves, but this 
might also turn out to be false. It has been judged neces- 
sary, in some of the literature, to attempt to give proofs 
of correctness of the algorithms. We consider this to be 
essential if an algorithm is to be anything more than 
something known to function only on the particular set 
of examples on which it has been tested; the analogy with 
proofs of correctness of programs is plain. We therefore 
follow this procedure here. It necessitates a number of 
definitions. So far as possible we have tried to follow 
extant terminology where our definitions coincide with 
others, and otherwise to follow the terminology of topol- 
ogy where appropriate. 

2 Definitions and notation 

If p is a pixel, the &neighbours are the eight pixels which 
share a common edge or corner with p .  We shall label 
these anticlockwise from 0 to 7, starting with 0 at the 
pixel to the right of p;  thus pixel 2 is directly above p .  
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and pixel 3 immediately to the left of pixel 2 and to the 
north-west of p .  A chain code is a sequence of these 
numbers indicating the direction taken at each step. 

Consider a dumb-bell-shaped region consisting of two 
discs joined by a line of pixels. Then the perimeter, in an 
intuitive sense to be made precise below, is a loop, but it 
has to traverse the connecting line twice, once in each 

0 0 0 0 0  0 0 0 0 0  

0 0 0 0 0  0 0 0 0 0  

Fig. 1 Connectivity paradox showing two valid interpretations 
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Fig. 2 
a Length = 8 + 4 
b Length = 12 + 1 
e Length = 4 
d Length = 4 + 4 + 4 

Assymmetry in inverse patterns 
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C 

Fig. 3 Incorrectly traced patterns 
LI Inner border not detected 
b Should be single object 
e Inner border masked 

Pixels are 4-adjacent if they share a common edge, and 
8-adjacent if they share a common edge or a common 
corner point. Thus, Cadjacent implies 8-adjacent, but 8- 
adjacent does not always imply Cadjacent. Two pixels 
are 4-(8-)connected if they are of the same colour and are 
4-(8-) adjacent, respectively. 

A path of length n is a sequence P = ( p l ,  p 2 ,  . . ., pJ of 
pixels such that p i  is connected to p i + l  for 1 < i < n. 
Since there are two senses of the term ‘connected’, there 
are two sorts of paths, which we call 4-paths and 8-paths. 
For technical reasons, which will be discussed below, we 
do not require that the pixels be distinct. It is not the 
case, then, that a path of length n will necessarily contain 
n distinct pixels, although it cannot contain more. 

The idea of a loop is central: a loop of length n is a 
path of length n + 1, (Po ,  p l ,  . . ., p.) with p o  = p l .  Again, 
there are 4-loops and 8-loops. 
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direction, which is why we do-not require the pixels in a 
path or a loop to be distinct. 

The set of pixels in a loop L will be called the loop set. 
A loop is minimal if every other loop on the same loop set 
has a length of at least n. Three pixels of a loop are con- 
secutive when they are P k  , pt  + 1, p k  + * for some k. 

A loop cuts itself if there is a pixel p in the loop set, 
and four distinct pixels a, b, c,  d of the loop set are 8- 
adjacent to it in such a way that a, p ,  b and c, p, d are 
consecutive, and the numbering of the neighbours of p 
assigned to a, b, c, d is neither increasing nor decreasing. 
A loop which does not cut itself is called simple. This is 
not a property of the loop set, since a figure 8 traversed 
one way will be simple, although it touches itself, but it 
need not be simple if traced in a different way. Alterna- 
tively, a loop having any pixel p, where the loop enters p 
twice without leaving p in between the directions of entry, 
is not simple. 

We shall of course be concerned with images, which 
are sets of pixels which we shall not in general require to 
be rectangular arrays, but which will in an intuitive sense 
be connected and have a boundary. More precisely, the 
boundary of a set X of pixels is that subset B(X)  of X 
having 8-neighbours not in X, or not defined at all. 

An image in our sense is a finite nonempty set of pixels 
having a boundary which is the loop set of some simple 
loop. We have that this excludes many things which are 
images in the ordinary sense because we require that all 
the boundary pixels have the same colour. We can 
always treat this case by putting a 1-pixel-wide frame of 
the same colour pixels around the other non-image to 
turn it into an image in our sense. 

A pixel p in an image 0 is surrounded by a set X if 
every 4-path which starts at p and finishes on the bound- 
ary of the image contains a pixel of X. A set Y is sur- 
rounded by X if every pixel of Y is surrounded by X. A 
set Y is surrounded by a loop if it is surrounded by the 
loop set of the loop. It follows immediately that every set 
surrounds itself, and that the boundary of an image sur- 
rounds the whole image. 

We shall talk of 0-pixels and 1-pixels without colour 
prejudice, and without loss of generality we suppose that 
the initial image has a bounding loop of 0-pixels. An 
object is a nonempty set of 1-pixels such that if a pixel is 
8-connected to the object, it is in the object; the com- 
plement of the set of objects in an image (all the 1-pixels) 
contains a set which is 4-connected to the bounding loop 
and is called the background. Other 8-connected subsets 
of the image composed of 0-pixels, if any, are called holes. 

These definitions capture the common-sense ideas 
with sufficient precision to allow us to state unam- 
biguously exactly what the algorithm we provide accom- 
plishes, and also to discuss other algorithms. 

3 Previous border definitions 

Previous publications [l-41 have defined objects to be 
8-connected and holes to be 4-connected. This is one way 
of avoiding the connectivity paradox (see Fig. 1). They 
have all traced borders over 1-pixels and never over 0- 
pixels; it has been shown [l] that this ensures that 
borders to be traced are those pixels which are 4-adjacent 
to a 0-pixel, and algorithms which find such borders may 
be found in the literature [l-41. 
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3.1 Problems with previous methods 
Borders surrounding solids are traced successfully by the 
methods mentioned above, but hole borders are frequent- 
ly poorly formed and may follow suboptimal paths. In 
Fig. 2 we have offset the borders for clarity. The pixels on 
the left are colour complements of those on the right, but 
the border shapes are very different, the hole borders 
being longer and more numerous. Moreover, the algo- 
rithms of References 1 and 4 failed to trace correctly the 
borders of the patterns shown in Fig. 3. See Reference 6 
for other examples of incorrectly traced patterns. 

4 Proposed new method 

4.1 Outline 
The algorithm we offer uses a different way of avoiding 
the connectivity paradox and restores invariance of the 
results under change of colour. The border of an object is 
traced over 1-pixels and over holes over 0-pixels. All 
pixels are 8-connected in either case, but loops are not 
permitted to cut themselves. Ensuring that this can be 
carried out for all possible images breaks down into two 
parts: first we need to show that an object always has an 
external bounding loop with the properties that it does 
not cut itself (although it may touch itself), and that it 
surrounds the object. We call this the rim border. We can 
apply this to all the (disjoint) objects in an image. The 
second part consists, in effect, of pairing off the rim 
borders and all the pixels 4-connected to them, inverting 
the colours, and showing that the result is a disjoint set of 
(negatived) subimages on which the process can be 
repeated until the residue is empty. Our procedure will be 
as follows: first we define the terms rim and rim border, 
and the floodfill and paring operations. This is done so 
that there is invariance under colour alternation. We 
show that every object has a unique rim border. The 
critical result is then a constructive proof that every rim 
border is the loop set of a minimal loop which is unique 
to starting point. This is the algorithm for finding the rim 
border of an object. The only complications arise from 
the need to ensure that the resulting loop does not cut 
itself. Finally, we show that paring an image yields a dis- 
joint set of subimages of the empty set, enabling the 
recursion. This completes the description of the algo- 
rithm and the proof of its correctness; the remainder of 
the paper discusses the implementation and results. 

4.2 Preliminaries 
For any nonempty set X of pixels, the rim of X, R(X),  is 
the set intersection of all subsets of X that surround X. 
Since X surrounds X, R ( X )  always exists and is non- 
empty and it is clearly unique. Intuitively, it is the outside 
border of X. 

For any pixel p in an image 0, thefloodfill of p,ffl(p), is 
the set of all those pixels which are connected to p by a 
4-path. From the definition of ‘connected‘ it follows that 
every pixel infl(p) has the same colour as p .  If X is any 
subset of 0 having pixels of all the same colour, then the 
floodfill of X, f l ( X ) ,  is the union of the sets fl(p) for all p 
in X .  It is immediate that f l [ f l ( X ) ]  =ff l (X) ,  that X is a 
subset of ffl(X), and that f l ( X )  is the set union of all 4- 
connected sets containing X. 

Paring is an operation applied to images or objects. If 
0 is an image then it has, by definition, a boundary which 
is the loop set of some simple loop, L e .  We take the set 
difference 0 - f l ( L e ) ;  that is we excise from 0 all those 
pixels 4-connected to the boundary of 0. We then colour- 
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invert this set, all 0-pixels become 1-pixels and vice versa, 
the resulting set being written P(0). It is clear that this 
operation is well defined. We shall show below that the 
result of performing this operation gives a set which is 
either empty or is the union of some finite number of 
subimages, where a subimage is a subset that is an image. 
This is the result which enables the recursion step. 

Recall that an object is defined to be a nonempty set of 
1-pixels in an image that is closed under 8-connectivity. 
Thus it may have subobjects in it. An example would be 
(Fig. 4) a pair of disjoint discs sitting inside the interior of 

Fig. 4 Example ofan object 

a region bounded by an annulus; the discs together with 
the annulus would constitute an object if all were com- 
posed of 1-pixels and no other 1-pixels were 8-connected 
to either the annulus or the discs. Each disc is a sub- 
object, as is the annulus. 

If X is an object with rim R(X) ,  then the paring of X, 
P(X) ,  is defined likewise as the result of taking the set 
difference X - f l [ R ( X ) ]  and inverting the colours. Since X 
is an object, R ( X )  has every pixel a 1-pixel and hence has 
a well-defined floodfill, so P ( X )  is well defined for objects 
as well as images. The result of paring an object is 
another object or a set of objects or the empty set; we 
will prove this at the same time as the corresponding 
result for images. 

In the case of the above example of an annulus con- 
taining two discs, the rim of the object is just the outer 
boundary of the annulus. Paring the set throws away the 
annulus and inverts the colour of what is left, to give a 
disc shape with two holes in it. 

The rim border, B(X),  of an object X in an image 8 is 
defined to be the union of the following recursively con- 
structed sets. The first set is the rim of the object, R(X) .  
We then pare the object to get P ( X )  and take the rim of 
this set too. We continue to take the rim of each object 
and to pare it. The union of the rims found is the rim 
border. Note that B(X) may contain pixels not in X and 
may contain both 0- and I-pixels. In the example of an 
annulus containing two discs, the rim border consists of 
(i) the outer boundary of the annulus, (ii) the hole bound- 
ary of 0-pixels which are in the hole inside the annulus 
and which bound that hole, and (iii) the boundary of the 
internal discs, a pair of circles made up of 1-pixels. We 
observe that the rim border in this case is a union of 
‘circles’, simple loops. Intuition leads us to expect that 
this will always be the case, which, with some qualifi- 
cations, is true. The algorithm we provide will produce 
these loops. We now give the relevant propositions with 
brief proofs. 
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4.3 Justifying propositions 
Proposition I :  If p is in the rim of an object X, then there 
is a 4-path from p to the boundary of the image which 
intersects X only in p.  

Proof: Suppose every path from p to the boundary of the 
image intersects the rim in some pixel other than p.  Then 
p may be removed from the rim, and it is still true that 
every pixel of X is surrounded by the new reduced set. 
But this contradicts the minimality of the rim. 

Proposition 2: If a pixel p is in the rim of an object X and 
has any 8-neighbours also in X, at least one of them is 
also in the rim. 

Proof: Suppose p and q are 8-adjacent pixels of X ;  p is in 
the rim and q is not. By Proposition 1 there is a 4-path 
from p to the boundary which intersects X only in p. It 
must pass through one of the 4-neighbours of p ;  without 
loss of generality, suppose it passes through location 0 
relative to p. Then q is not in location 0 else there is a 
4-path from q to the boundary of the image which inter- 
sects X only in q and hence q is not surrounded by the 
rim; a contradiction. In any other location, there are two 
possible 4-paths to the pixel 0 relative to p, which go 
around p ,  remaining 8-adjacent to p, and both of these 
must encounter a pixel of X which is 8-adjacent to p ,  and 
is in the rim of X, or q is not surrounded by the rim. 

The following proposition has as (constructive) proof the 
border-tracing algorithm which is the core of this paper. 

4.4 Border- following algorithm 
Proposition 3 :  The rim of any object X in an image 0 is 
the loop set of some minimal simple loop which is unique 
up to starting point. 

Proof: The image boundary can be expressed, by hypoth- 
esis, as a simple loop which may be taken to be minimal 
and traced anticlockwise. We may suppose that it has 
been constructed by some such process as using a point- 
ing device to generate the loop from some larger image. 
In generating such a loop, we start at some pixel and 
move onto another which is 8-connected to the first; if at 
some stage k we next move to a pixel p r + l  which is 
already in the path set so far constructed, F say, we are 
constrained to ensure that we do not cut F; i.e. we must 
leave p by a pixel p k + 2  which does not have a pixel 
already traced lying between our consecutive pixels pr , 
pkc l ,  p k + 2  in the ordering of the 8-neighbours of p. Since 
simplicity is a local condition, we may make this check 
algorithmically without difficulty; it is, of course, a simple 
enough task for the human eye. 

Constructing such a simple loop allows us to find 0- 
pixels which are topmost in the boundary of the image, 
i.e. no pixel in the loop is higher in the raster scan. We 
record the y-coordinate of a topmost pixel. Of these 
pixels we can find the leftmost (i.e. none of the topmost 
pixels are further left than this pixel) which is clearly 
unique. We also need to have the values of the x- 
coordinate of the leftmost and rightmost pixels and the 
y-coordinate of the downmost pixels, effectively putting a 
rectangular box around the image. We shall start scan- 
ning the image from this leftmost of the topmost pixels in 
the usual raster, left to right then move down, and scan. 
Horizontal scans require us to check right across the 
whole image until the x-coordinate is equal to that of 
some rightmost pixel; simply encountering the bounding 
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loop is not enough reason a stop since there may be 
other pixels to the right. 

To move down, we simply take the pixel in the loop 
which follows the last starting point of a horizontal scan. 
This suffices to ensure that every pixel of the image is 
scanned: but suppose this is not the case. Then there is a 
pixel q in the image which has not been scanned, and we 
have at completion returned to our starting point and 
have covered every pixel in the bounding loop as the 
start of a horizontal scan. Take the horizontal line of 
pixels to the left of q. This cannot meet the bounding 
loop, which therefore does not surround the image; a 
contradiction. 

In constructing the bounding loop, it is convenient to 
label the pixels of the loop as either searchable if an 
image pixel lies to the right of them or unsearchable if no 
such image pixel exists. We shall do the same for objects. 

We can now start the search to find the objects of 8. 
The bounding loop is, by definition, a set of @pixels. 

0 0 0 0 0 0 0  

direction of ~ 

l inescan O O O 
0 

0 0 
0 0 0 0 0 0 0  

Fig. 5 Initial poim may be re-entered 

Starting again at the leftmost of the topmost pixels of the 
bounding loop of 8, we scan until a 1-pixel is encohntered 
or we meet an unsearchable pixel. If a 1-pixel is encoun- 
tered, we enter a border-following procedure defined as 
follows. 

We know that there is no 1-pixel of the object encoun- 
tered to the left of the current scan line. We therefore 
consider the ray which has its origin in this first I-pixel, 
p I ,  and extends to the left, and which intersects only 0- 
pixels except for p 1  itself. This ray is swept clockwise 
about p l  until it encounters another 1-pixel which is an 
8-neighbour of p 1  or returns to its starting position. Now 
p 1  must be in the rim of the object X containing it, and 
by Proposition 2 either it is the only pixel of X or the 
rotating ray will find an 8-neighbour of p 1  which is in X. 
The first such pixel is declared to be p 2 .  We claim this is 
in the rim of X, and the argument is that of Proposition 
2. 

We now go to the inductive step. Suppose we have 
found a rim pixel of X, p k ,  for k > 1. Then we take the 
ray from pk back through pt -  1. This is swept clockwise 
until it encounters another 1-pixel; the first such pixel is 
declared to be p k I 1 .  We observe that this process ensures 
that there is never another incoming pixel between an 
incoming pixel and an outgoing one, so if it defines a 
loop the loop must be simple. The termination condition 
has two parts: we must return to a pixel previously 
encountered in the path, thus giving a loop. This is not 
sufficient, however; we must continue tracing until the 
ray also returns to its original position or we may omit 
part of the object. 

It is plain that the path must indeed return to its start- 
ing point and the ray to its original orientation even- 
tually, since there are only finitely many 1-pixels in the 
image, only eight possible orientations, and pr and pk+ I 

are always distinct. It is also plain that the loop is 
minimal and contains only rim pixels. It yields the rim 
border of the object. 

Having terminated the finding of the rim border of X 
(which is conveniently specified by its first pixel and a 
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since there'may be other objects to the right of the found 
object. The same procedure is implemented on encoun- 
tering another 1-pixel unless that pixel is one already in 
the rim border of an earlier object. This may be done 
conveniently by finding the topmost, leftmost, downmost 
and rightmost elements of the rim border of X and label- 
ling the pixels as searchable or unsearchable in the same 
sense as for the image, except that now we do it on 1- 
pixels. 

On completing a horizontal scan by encountering an 
unsearchable boundary pixel, we return to the last pixel 
of the bounding loop of 8 used as a scan start, and take 
the next loop pixel to be our next scan start. A 1-pixel 
which is found may be checked to see if it is the bounding 
loop of a rim border found higher up; if so we jump all 
the 1-pixels until a 1-pixel in the boundary labelled as 
unsearchable is encountered, and then we restart the 
horizontal scan from the @pixel to its right. This ensures 
that we do not start tracing the rim border of objects 
entirely surrounded by the outer object. It is plain that 
this procedure will give a simple minimal loop which has 
loop-set the rim border of the object X;  moreover, every 
such object X must be found by the scanning procedure 
which calls the border-following procedure for X. We 
observe that the objects are disjoint since they are closed 
under 8-connectivity. 

4.5 The induction step 
Proposition 4 :  The result of paring an image 8 is a set 
which is either empty or the finite union of disjoint 
images, and the result of paring an object is that it is 
empty or a finite union of disjoint objects. 

Proof: To take the trivial case first, if an image contains 
no objects, then it must consist of only 0-pixels and 
paring it will yield the empty set. So we may take it that 
there is at least one object X in 8. Paring removes all the 
0-pixels in the background, which leaves everything 
inside the rim border of the (disjoint) set of objects. Let 
H ( X )  denote the hull of the object X, i.e. the set of all 
pixels surrounded by the rim of X. Since the objects are 
closed under 8-connections, the complement of the union 
of the hulls is 4-connected and must therefore be the 
floodfill of the boundary of 8. Paring first removes this 
complement, giving a union of the hulls, which are also 
disjoint. Each hull is then colour-inverted. The rim of 
each hull is, by Proposition 3, the loop set of a simple 
minimal loop and is hence an image. 

If X is an object, the same argument holds by colour 
inversion. 

Proposition 5: The rim border of an object in an image 
suffices to reconstruct the object. 

Proof: Recall that the rim border is constructed by 
taking the union of the rim of an object, then paring and 
taking the rim of the result, which process is iterated until 
the result is empty. This yields a set of chain codes for the 
rim loops and some pixels on each such loop, the colours 
of the pixels alternating as we move into the object and 
its holes. To reconstruct the object, we start with the out- 
ermost loop and floodfill with the loop's colour. The only 
obstruction is any internal loop, which is precisely the 
rim border of a hole. Clearly all the floodfilled pixels 
return to the correct colour. This is now iterated with the 
appropriate colour change from the rim border of the 
holes. 
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5.1 Effect of the new definition 
The images of Fig. 2, may be compared with those of Fig. 
6, which were obtained using the new definition. The 
improvements may be seen to include the following: 

(1) There are fewer hole borders in some cases, 
resulting in better data compression and faster processing 
in later stages. 

(2) Colour inversion produces the same chain code. 
(3) Hole borders are shorter, again resulting in better 

compression and less postprocessing. 

These improvements can also be achieved for three- 
dimensional images [S-81. 

0 0 0 0 0  e e m e m  

0 e 
0 0 0 0 0  e e e e e  

a b 

0 0 0 0 0  e e e e m  

o o o o o  e e e e e  
C d 

Fig. 6 
a. b Length = 9 
e. d Length = 4 

Hole shape is improved (cf Fig. 2) 

5.2 Implementation 
5.2.1 Border-tracing algorithm: This is readily imple- 
mented as a pair of co-recursive procedures. It does not 
require the image border to be rectangular, although it 
may require a frame of 0-pixels to be placed around the 
initial image. The object search and the image search are 
identical except for colour inversion. 

52.2 Coding: The algorithm requires a frame buffer of 
3-bit planes to store the list of searchable and unsearch- 
able pixels and to extract the topological information to 

Fig. 7 Topology of image 

arbitrary depth. This compares favourably with those 
methods where the depth of the buffer depends on the 
number of loops used. The algorithm has been coded in 
C and comprises about 150 lines. 

5.3 Results 
The method has been tested extensively on artificial and 
biomedical images. It correctly locates and traces all the 
borders shown in Fig. 3 that were incorrectly traced by 
the previous methods. It may be seen that the hole 
borders are better shaped and more compact. 
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