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Abstract 

A Nonlinear correlator detector for the detection of a signal class with some intra class variance is 
developed using the Modified Probabilistic Neural Network and the General Regression Neural 
Network. An application, involving the detection of regular tone bursts transmitted over a poor and 
noisy radio channel subjected to fading, random noise and impulse noise effects, is used to show the 
effectiveness of the method as compared to a linear correlator. 

The statistical dependency between two vector variables XI and x2 can be of t m  types: linear 
dependency or nonlinear dependency [I]. Linear dependency is what is normally regarded as 
correlation. If the variables are uncorrelated, they are no longer linearly dependent, but they may still 
be statistically dependent. Nonlinear dependency is called "residual" dependency because it is the 
dependency that remains after the linear dependency is removed. Two zero mean variables XI and 
x2 are uncorrelated if the expected value of their product is zero. 

E[ XI x2 ] = 0, (uncorrelated) 

But XI and x2 are independent if and only if their joint probability density function (pdf) is equal to the 
product of the individual densities. 

p( XI, x2 ) = p( XI) p( x2 ), V XI and x2, (independent) 

Therefore, it is possible for XI and x2 to be uncorrelated but still dependent. It is very useful to be 
able to assign the degree of dependency of a random variable to some specific process. This can 
apply to signal detection where the same process can generate a range of different signal waveforms 
rather than one specific waveform. This is typical in classical linear correlation, or matched filter 
detector systems. A complex example of this application is the detection and identification in time of 
a sheep's single chew from it's non deterministic jaw sound (This is a research problem that the 
authors are currently investigating in relation to sheep feeding studies). A simpler example is the 
accurate detection in time of deterministic signal codes transmitted over a radio channel which have 
been affected by various linear and nonlinear stochastic channel effects. These problems can be 
solved via a number of nonlinear signal detection techniques including statistical and neural network 
pattern recognition. However, these methods usually require sufficient training vectors available from 
the desired process together with the likely range of noise or non process signals to estimate a 
posteriori pdfs of each. Also, they are usually designed to test the hypothesis of signal present or 
absent rather than to give an accurate estimate of the signal location in time. It may be more 
convenient to have a nonlinear matching filter that works in a similar way to the correlator or optimal 
linear matching filter. In this case the signal presence would be determined by the output of the 
correlator exceeding a preset threshold and its location in time established by the position of the 
highest peak output as it is commonly done in the linear case. 

A neural netmrk system can be developed and trained to measure the degree of dependency 
between a random vector and a process for which there are ample example vectors. To do this a 
suitable signal and system model must be specified as follows. Assume a specific continuous time 
process which is generating a class of aperiodic waveform sections of a specified duration with 
intervals of lower level noise sections in between. The noise may be a mixture of zero mean 
Gaussian plus other nonlinear noise such as impulse noise. If the processes signal is digitally 
sampled at a uniform sampling rate of Fs amplitude sample points per second the waveform length is 
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defined to be p points long. An arbitrary vector x composed of p successive amplitude sample points 
from the process can be defined as: 

x = [ x(n), x(n-I), x(n-2), ....... x(n-p-I) 1, n is the discrete time index. 

The class waveform reference sample set can be specified as the vector set { xref i I i = I ,  ... NUM } 
and a general model for a nonlinear con-elator can be developed as shown in Figure 1. 

energy l l  
FIGURE I: General Nonlinear Correlator Model 

There are NUM parallel correlators with each of the Xref i being a correlator matching template. The 
correlation of vector x with each reference template IS then represented by (xTxref , ). It is then 
normalised to one by dividing by (xTref i Xref i). The normalised output of each correlator is fed into a 
delay line 2p sample points long. The system output is taken from the output of the delay line which 
has the highest energy if it exceeds a minimum level, othervise the output is made zero. This 
introduces a system delay of 2p, so instead of taking the output of the highest energy delay line it 
would be acceptable to take the current input to that delay line instead. A neural network can be 
developed to embody this model and provide a continuous nonlinear correlator output r(x) as the 
vector x is taken from the process signal by sliding a sampling Andow p sample points long forward 
in time a point at a time. 

The Modified Probabilistic Neural Network (MPNN) [2,3] and the General Regression Neural Netmrk 
(GRNN) [4] have an ideal architecture for this type of problem although any feed forward neural 
network can be used. Both these networks are related to the Probabilistic Neural Network (PNN) [5] 
which is normally considered to be a classifier but can also be used for non parametric pdf 
estimation. They can both be described as general regression or mapping functions given by: 

NS 
[Yi ~xP(-(E~)~(E~))I 

i = l  202 
Y A W  = 

NS 
I ~ X P ( - ( E A S ~ ) ~ ( ~ - ~ ) ) I  

i = l  202 

If the yi are allowed to have real scalar values equation (1) becomes exactly Specht's GRNN which 
incorporates each and every training vector pair {xi -> yi} into its architecture as does the PNN (xi is 
a single training vector in the input space and yi is the associated desired scalar output). If it can be 
assume that there is only one centre in the input space per output yi then a convenient general model 
to use for all forms of the MPNN and the GRNN is: 

M 
c 
i = l  202 

c 
i = l  202 

[ zi  yi exp(-(x - centxi)T(x - centxi)) 1 

Y Y X )  = 
M 

[ zi  exp(-(x - centxi)T(x - centxi)) 1 

centxi is the centre or mean vector for class i in the input space (real valued or quantised). 
0 is the single learning or smoothing parameter chosen during network training. 
Yi is the output related to centxi (real valued or quantised). 
M is the number of unique centres i in the MPNN structure. 
Zi is the number of input training vectors Xj associated with centxi. 
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M 
NS = C 

i = l  
Equation (2) can be derived from the GRNN equation (1) through the following approximation: 

Zi, is the total number of training vectors. 

Zi 

j = 1  
Zi exp-((x-centxi)T(x-centxi)/202) c ~ x P - ( ( x - x ~ ) T ( x - x ~ ) / ~ ~ ~ )  (3) 

This is a reasonable approximation if the Xj are close together in a relatively small local space and 
can be adequately represented by a single centre vector centxi. The key to the practical application 
of the general MPNN equation (2) is related to the method of selection of the yi and the grouping of 
the associated input vectors into the centre vector centxi for each class i. One solution to this 
selection and grouping for simple sinusoidal signals proposed by Zaknich et al [2] was to uniformly 
quantise the noiseless desired yi, separately group the y, having positive and negative slopes in the 
waveform and associate them with the mean of the input vectors mapping to each group. This 
simple case led to a more general approach, for both simple and more complex signals, of uniquely 
identifying the quantised yi having a similar local waveform pattern which was called the MPNN 
Method A [6]. Method A involved taking the desired waveform y(t) and uniformly sampling it in time 
to y(n) digital sample points which were then uniformly quantised into one of N quantisation levels to 
be able to define a desired output phase state vector composed of y(n) and the m-I quantised 
samples immediately preceding it in time, ie. (y(n), y(n-I), ....y( n-m-I). The greater the m the more 
uniquely a quantised output value y(n) or yi could be identified in the waveform for the purpose of 
associating all the input vectors Xi mapping into the same phase state. In most applications it was 
sufficient to use m = 1 with the y(n) sample quantised to one of N uniform levels and the y(n-I) to Ns 
levels (usually N = Ns but not necessarily). 

The training of the GRNN and the MPNN Method A can be achieved by taking a long section of the 
process and identifying the exact p length window positions where the NUM class reference 
waveform vectors are located. A sequence of training vectors x, can be collected by starting at the 
beginning and sliding one point at time through the whole training signal. The training set of {input -> 
output} vector pairs are created as follows: 

<xj -> (XjTXref i ) / (Xref iTxref i) 1 j = I ,...... NS 1 if xj overlaps Xref j, else {xj -> o I j = I ,...... NS 1, 
assuming only one Xref i overlaps with Xj at a time. 

After the GRNN or MPNN has been trained and optimised it produces the normalised linear 
correlation output with respect to nearest matching template to the input vector x. Therefore, 
although the templates may not be linearly dependent they are non linearly dependent and this 
dependence becomes quantified by the nonlinear correlator output values r(x). After training this 
nonlinear correlator can be used for the detection of class vectors if the output exceeds a preset 
detection threshold 9 and their location in time by their peak output. 

An application based on the detection of regular tone bursts transmitted over a poor and noisy radio 
channel was contrived to test the MPNN/GRNN Nonlinear Correlator described above. It was 
assumed that the tone frequency, amplitude fading and phase effects were unknown and were 
considered to be normal intra-class variations. Only the burst length was fixed and known. This 
application tested the Nonlinear Correlator for signal detection and location in time and it was 
compared with the best linear correlator solution since there was significant linear correlation 
between the tone bursts. The variable tone burst signal in this case can be thought of as a 
deterministic signal with some intra-class variance due to the fading effects plus random zero mean 
white noise and impulse noise. 

Turo independent data sets, a training and testing set, each having 710 known vector pairs were 
constructed by sampling synthesised signals at a sampling frequency of 1.667 KHz (0.426 seconds). 
Each signal had 8 tone bursts at a frequency of 400 Hz subjected to amplitude fading effects. The 
tones had a starting phase between 0 to 2~ and were 30 points long (18.0 ms) with noisy gaps of 61 
points (36.6 ms) in between. The noise was added to the whole signal and consisted of zero mean 
Gaussian noise plus impulse noise with random amplitude and random locations. The input vector 
dimension was p=30 which represented the length of each tone. Each discrete nonlinear correlator 
output sample point y(n) mapped from the input vector x made up of 30 discrete time series sample 
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points of the input signal which included the current sample point x(n) and the 29 sample points 
immediately prior to it, ie. 

x = [x(n),x(n-~ ),x(n-2) ,... . . ... . . ,x(n-p-l )IT, vector. 

FIGURE 2: 640 polnts of testlng signal and dested output 

The data sets used in this application were as follows: 
training data, NS = 710, p = 30, K = 1, delay = 0. 
testing data, NS = 710, p = 30, K = 1, delay = 0. 

FIGURE 3: Llnea ColTetata Output for the Testlng Slgnal Input 

Figure 2 shows the testing input or source signal and the desired or normalised nonlinear correlator 
output signal. The training signal pair was another independent signal pair which looked very similar 
to the testing signal pair. All the peak nonlinear correlator outputs were 1.0. 

1 

The peak outputs of the desired normalised correlation output all had the same amplitude according 
to the nonlinear correlator model defined above. When the source signal was passed through a linear 
correlator with a matching template made from a 18 ms long sine burst, having a frequency of 400 
Hz and constant amplitude the waveform show in Figure 3 resulted. The peak output was 0.8380 
which was less than the maximum possible value of 1.0. The individual peak amplitudes varied 
according to the varying amplitudes of the tones in the source signal which were subject to the fading 
effects. A similar output was achieved when the source signal was filtered by a 30 tap finite impulse 
response (FIR) filter trained with the same training data. This FIR filter actually became a linear 
correlator so it was no surprise that its output and performance was very similar. 

81.95 seconds 

The times in the tables are obtained using Borland C 3.0 implementations on an 80486 PC running at 
33 MHz, and they are quoted for reference only. A GRNN was trained to implement the nonlinear 
correlator and the following results were achieved. 

GRNN Equation (1) 
mse cs training time execution timelvector 

0.167257 0.08 231.18 seconds 0.3256 seconds 
0.166078 0.16 244.59 seconds 0.3449 seconds 
0.153585 0.32 244.63 seconds 0.3445 seconds 
0.078727 0.64 244.64 seconds 0.3446 seconds 
0.053380 1.28 241.62 seconds 0.3403 seconds 

Training for both the GRNN and MPNN usually involves the selection of a single optimal parameter (5 

which gives the minimum mean square error (mse) between the desired correlator outputs and the 
actual netmrk outputs as the whole testing set of data is passed through the netwark. The training 
data set is incorporated into the netmrk architecture, either directly as for the GRNN or indirectly as 
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for the MPNN. In this case the mse approached a minimum as cr -> 00 but it resulted in a degenerate 
solution. As 0 -> CO the output approached a constant output irrespective of the input x. The mse 
measure therefore, was not an appropriate one for this problem. It was better to seek a minimum 
absolute error between the output and the desired response. It was more important to ensure that the 
peak outputs remained close to 1.0 rather than let them degenerate for the sake of an overall low 
mse. Considering the nature of the mapping, it would be best to seek the response of the nearest 
training vector to x. This implies that a lower CJ which produced more of a nearest neighbour solution 

nd the MPNN). A c = 0.16 was chosen even though the mse 
ed the best output waveform with the peaks at the right height 
latively higher than expected mainly due to the fact that there 

were relatively few training vectors compared to the possible variety that they could achieve from 
that process. 

FIGURE 4: GRNN Nonlinear Comhtor Output, elgm:0.16 FIGURE 5: MPNN Nollnoar Comelator Output, slgm=O.l6, N=Ns=18 I 

The peak output achieved by passing the testing signal through the GRNN was 0.9998 which showed 
it was working correctly. Another benefit of the GRNN result was that the gap noise was quite low, 
lower in fact than that present in the training data, as can be seen in Figure 4. This indicated that the 
GRNN was providing some extra beneficial noise smoothing. 

The MPNN Method A implementation of the nonlinear correlator gave similar results as for the 
GRNN, as can be seen in Figure 5, but with a smaller or more efficient network size. It provided more 
noise smoothing as expected. The peak output from the testing signal was 0.9997. The results for a 
few different quantisation selections were as follows. 

Data MPNN Method A, Equation (2). m=2 
M N Ns mse C training time execution time per vector 

403 32 32 0.166718 0.16 139.67 secs 0.19672 seconds 
249 16 16 0.167216 0.16 86.29 secs 0.12153 seconds 
117 8 8 0.166750 0.16 40.59 secs 0.0571 7 seconds 

Conclusions 

Both the GRNN and MPNN Method A produced better results than the linear method and thus 
demonstrate their suitability for the intended class of signal detection applications. The method would 
be more effective if more training vectors were used but there was sufficient evidence to indicate that 
the method was valid. 
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