Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Characterization of the Jembrana disease virus tat gene and the cis- and trans-regulatory elements in its long terminal repeats

Chen, H., Wilcox, G., Kertayadnya, G. and Wood, C. (1999) Characterization of the Jembrana disease virus tat gene and the cis- and trans-regulatory elements in its long terminal repeats. Journal of Virology, 73 (1). pp. 658-666.

Free to read:
*No subscription required


Jembrana disease virus (JDV) is a newly identified bovine lentivirus that is closely related to the bovine immunodeficiency virus (BIV). JDV contains a tat gene, encoded by two exons, which has potent transactivation activity. Cotransfection of the JDV tat expression plasmid with the JDV promoter chloramphenicol acetyltransferase (CAT) construct pJDV-U3R resulted in a substantial increase in the level of CAT mRNA transcribed from the JDV long terminal repeat (LTR) and a dramatic increase in the CAT protein level. Deletion analysis of the LTR sequences showed that sequences spanning nucleotides -68 to +53, including the TATA box and the predicted first stem- loop structure of the predicted Tat response element (TAR), were required for efficient transactivation. The results, derived from site-directed mutagenesis experiments, suggested that the base pairing in the stem of the first stem-loop structure in the TAR region was important for JDV Tat- mediated transactivation; in contrast, nucleotide substitutions in the loop region of JDV TAR had less effect. For the JDV LTR, upstream sequences, from nucleotide -196 and beyond, as well as the predicted secondary structures in the R region, may have a negative effect on basal JDV promoter activity. Deletion of these regions resulted in a four- to fivefold increase in basal expression. The JDV Tat is also a potent transactivator of other animal and primate lentivirus promoters. It transactivated BIV and human immunodeficiency virus type 1 (HIV-1) LTRs to levels similar to those with their homologous Tat proteins. In contrast, HIV-1 Tat has minimal effects on JDV LTR expression, whereas BIV Tat moderately transactivated the JDV LTR. Our study suggests that JDV may use a mechanism of transactivation similar but not identical to those of other animal and primate lentiviruses.

Item Type: Journal Article
Murdoch Affiliation: School of Veterinary and Biomedical Sciences
Publisher: American Society for Microbiology
Item Control Page Item Control Page