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Abstract  

 
The binding kinetics of several benzimidazole compounds were determined with 

recombinant tubulin monomers and heterodimers from benzimidazole-sensitive and     

-insensitive organisms. This study utilised the naturally occurring high efficacy of the 

benzimdazoles for the parasitic protozoa Giardia duodenalis and Encephalitozoon 

intestinalis. The benzimidazoles are not active against the protozoan Cryptosporidium 

parvum or mammalian hosts, including humans. The affinity of several benzimidazole 

derivatives for monomeric and heterodimeric β-tubulin was clearly demonstrated, thus 

supporting previous studies of drug-resistant nematode and fungal populations.           

A homology model of protozoan αβ-tubulin, produced using the three-dimensional 

structure of mammalian αβ-tubulin, identified a strongly hydrophobic domain only on the 

β-tubulin protein of sensitive protozoa. This domain is proposed to be the 

benzimidazole-binding domain and the amino acid residues within it include three key 

residues which are substituted between benzimidazole-sensitive and -insensitive 

organisms. These residues are Ile-189, Val-199, and Phe-200 that all have non-polar, 

hydrophobic side groups and are proposed to bind with the R5 side chain of several 

benzimidazole derivatives. In addition to this, the benzimidazole derivatives were able 

to bind irreversibly with assembling microtubules from sensitive parasites. The 

incorporation of benzimidazole-bound αβ-heterodimers into assembling microtubules 

was shown to arrest polymerisation in vitro although the addition of benzimidazole 

compounds to assembled microtubules did not result in depolymerisation. Taken 

together, these results suggest that the mechanism of action of these compounds is 

through disruption of the dynamic equilibrium that balances the cycle of microtubule 

polymerisation and disintegration within these protozoa. Further, this effect is brought 

about by preferential binding of the benzimidazoles to a hydrophobic region on the β-

tubulin protein.  
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