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Abstract  
 

Following on from the large scale loss of seagrass in Cockburn Sound and extensive transplanting 

of Posidonia australis which had taken place on Southern Flats, assessment of the recovery of the 

seagrass benthic infauna ecosystems was undertaken. Samples from the outer, middle and centre 

edge zones of four different density transplant plots (1 m, 0.5 m, 0.25 m and 0.125 m spacing) 

located within a larger transplantation meadow were compared against two natural meadows 

and a bare sand site. Four years after transplantation the 0.25 and 0.125 m Plots had shoot 

densities comparable to those of the natural seagrass sites with a two-way ANOVA revealing 

significant effects of site and edge zone on the seagrass shoot density. Total infauna abundance 

and infauna assemblages within the 0.25 and 0.125 m Plots had reached equivalent level to the 

natural meadows but not at the 1 and 0.5 m Plots. A two-way ANOVA showed a significant 

difference in the total infauna abundance between the different sites but no significant edge 

effect was detected. Eusiridae, Solecurtidae, Diogenidae, Columbellidae, Fissurellidae, Oweniidae 

and Ischnochitonidae were found to occur in the two natural meadows and in the 0.25 and 0.125 

m Plots and may be climax or K-species indicating the recovery of the transplanted seagrass to 

natural levels. The transplanted seagrass was also found to support small numbers of pipefish, 

seahorses and a sea lion. From this study it can be seen that the shoot densities and infauna 

abundances and assemblages of the 0.25 and 0.125 m Plots have reached levels comparable the 

nearby natural meadows and that those of the 1 and 0.5 m Plots are likely to reach comparable 

level another in one to two years. 
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1. Introduction  
Declines in seagrass have been occurring at alarming rates all over the world in the last 20 years 

(Walker et al., 2006). In most instances these declines are the result of human activities such as 

eutrophication, dredging and coastal development (Cambridge and McComb, 1984; Short and 

WyllieςEcheverria, 1996). Worldwide there are approximately 60 species of recorded seagrass, 

most of which form single species meadows (Short and Coles, 2001; Orth et al., 2006). Of these 

just over one third, roughly 26 species, are found within Western Australian waters (Kirkman and 

Walker, 1989; Butler and Jernakoff, 1999). 

 

A comprehensive study by Short et alΦ όнлммύ ŜȄŀƳƛƴŜŘ ǘƘŜ Ǌƛǎƪ ƻŦ ŜȄǘƛƴŎǘƛƻƴ ƻŦ ǘƘŜ ǿƻǊƭŘΩǎ 

seagrasses and found 10 species to be at risk of becoming extinct, three of which qualified for 

listing as endangered. With seagrass habitats diminishing, efforts into restoring, rehabilitating and 

transplanting seagrass into areas where they formerly occupied, have been increasing (Fonseca et 

al., 1982; Kirkman, 1998; Paling et al., 2000; Paling et al., 2001a; Paling et al., 2001b; van Keulen 

et al., 2003; Uhrin et al., 2009).  

 

Transplantation of seagrass is vital for the recovery of the various ecosystem functions they 

provide, such as alteration of hydrodynamics processes, sediment trapping and stabilisation, 

carbon trapping, providing food and acting as a nursery habitat (Butler and Jernakoff, 1999; Duffy, 

2006). These ecosystem functions are extremely valuable with estimations for the value of 

seagrass habitats ranging from $12,635 to $25,270 ha.-1yr-1 (Lothian, 1999); a more recent study 

however has placed the value of seagrass habitats at $34,000 ha.-1yr-1 (Short et al., 2011). 

 

Assessing the recovery of each ecosystem function in transplanted seagrass is vital for the 

rehabilitation of loǎǘ ǎŜŀƎǊŀǎǎ ƳŜŀŘƻǿǎΣ ǿƛǘƘ ŜŀŎƘ ŜŎƻǎȅǎǘŜƳ ŦǳƴŎǘƛƻƴ ǇǊƻǾƛŘƛƴƎ ŀ ΨǇƛŜŎŜΩ ƻŦ ǘƘŜ 

ǇǊƻǾŜǊōƛŀƭ ΨŜŎƻƭƻƎƛŎŀƭ ƧƛƎ-ǎŀǿ ǇǳȊȊƭŜΩΤ ǿƛǘƘ ǘƘŜ Ŧǳƭƭ ǇƛŎǘǳǊŜ ƴƻǘ ōŜƛƴƎ ǎŜŜƴ ǳƴǘƛƭ ŀƭƭ ǘƘŜ ΨǇƛŜŎŜǎΩ ŀǊŜ 
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back together. The following section describes each of these ecological function ΨǇƛŜŎŜǎΩ and why 

they are vital to the seagrass ecosystem. 

 

1.1 Seagrass Ecosystem Functionality 

1.1.1 Hydrodynamics 

Submerged plants are known for helping prevent bank erosion in rivers and streams by acting as a 

buffer against strong currents and waves by reducing the water velocity. A study by Bonham 

(1983) revealed that as much as two thirds of boats bow wave energy dissipates after travelling 

two meters into aquatic vegetation along river banks. Seagrass provide a similar function within 

coastal areas by reducing the force of the currents and waves, thereby reducing their impact on 

beaches, shorelines and coastal structures. Research has shown that the majority of the water 

velocity is reduced during the first meter from the leading edge of the seagrass meadows (Gambi 

et al., 1990; Peterson et al., 2004; Fonseca and Koehl, 2006; Backhaus and Verduin, 2008; Morris 

et al., 2008; Lefebvre et al., 2010), and that water flow results in an increase in turbulence above 

the seagrass canopy as the water comes into contact with the seagrass leaves (Fonseca and 

Fisher, 1986; Gambi et al., 1990; Verduin and Backhaus, 2000; Peterson et al., 2004; Morris et al., 

2008; Lefebvre et al., 2010). 

 

However, depending on the morphological structures of the seagrass, water flow can also be 

greater underneath the seagrass canopy, as was found with Amphibolis sp. (Verduin and 

Backhaus, 2000; van Keulen and Borowitzka, 2002). The subtle differences in hydrodynamics and 

water flow created by these different structures, such as the stems of the Amphibolis species and 

the concave surface of Posidonia sinuosa, provide additional niches for fauna. This is supported 

by research from Jernakoff and Nielsen (1998) and Trautman and Borowitzka (1999), who 

revealed a marked difference in the epiphytic algae and epifauna assemblages associated with 

these different seagrass structures and their hydrodynamic characteristics. 
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While the seagrass structure impacts on the water flow and speed, the water dynamics have an 

impact upon the seagras structure. The water flow into the seagrass meadows is vital for the 

transport of nutrients such as ammonium and nitrates, which the seagrass and their epiphytes 

utilize for enhancing their growth (Brun et al., 2003; Cornelisen and Thomas, 2004 and 2006; 

Morris et al., 2008). Excessive water flow within seagrass has also been shown to have negative 

impacts on their growth, with lower shoot densities occurring in areas of high water movement 

compared with sheltered sites (Schanz and Asmus, 2003). This impact on the seagrass is prevalent 

at Southern Flats in Cockburn Sound, Western Australia, where the construction of the Garden 

Island causeway has restricted water movement into and out of the bay. Water flow into and out 

of Cockburn Sound is restricted to two short trestle bridges in the rock wall causeway, and as a 

result of the mass movement of water through these narrow sections, the water velocity is 

greatly increased, resulting in the scouring of the sea bed and loss of the seagrass (Kendrick et al., 

2002; Cockburn Sound Management Council, 2003). 

 

Hydrodynamic regimes also play a vital role in the seagrass community with marked differences 

occurring between tidal and wave dominated areas. Koch and Gust (1999) looked at the effects of 

tidal and wave dominated regimes on the seagrass Thalassia testudinum and found marked 

differences in the water mixing within the meadow and outside the meadow. These boundaries in 

water mixing within tidal dominated areas experiencing unidirectional flow were contributed to 

ǘƘŜ άǎƪƛƳƳƛƴƎ Ŧƭƻǿέ ƻǊ ƭŀƳƛƴŀǊ Ŧƭƻǿ ŜȄǇŜǊƛŜƴŎŜŘ ŀōƻǾŜ ǘƘŜ ƳŜŀŘƻǿΦ ¢Ƙƛǎ ƳƻǾŜƳŜƴǘ ƻŦ ǘƘŜ 

water results in the attenuation of the seagrass blades, causing them to blow over and form a 

distinct boundary, below which substantially lower water velocities and decreased mixing are 

experienced (Fonseca and Fisher, 1986; Gambi et al., 1990; Koch and Gust, 1999). 

 

More recently, research by Carruthers et al. (2007) has shown that seagrass have adapted to 

different wave energy environments through morphological features. Reinforcement of above 
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ground structures enable certain seagrass to withstand the battering of the ocean swell, while 

deeper rhizome and root penetration, provide a sturdy anchor to prevent being uprooted, but 

also to cope with changing sediment burial. Earlier work by Cambridge (1980) also observed 

marked zonation in seagrass species across a wave energy gradient with changes in root-rhizome 

growth and structure in response to sediment accretion. 

 

1.1.2 Sediment Trapping and Stabilisation 

Seagrass sediments are typically characterised by soft sands, often with quantities of fine silt or 

mud with a high organic content (van Keulen and Borowitzka, 2003; de Boer, 2007; Bos et al., 

2007; van Katwijk et al., 2010). The reason for the presence of these fine sediments within the 

meadows is a result of the change in hydrodynamic processes at the water-seagrass interface. As 

the water encounters the seagrass canopy it experiences increased drag as the leaves sway 

through the water, reducing the water flow and increasing the turbulence above the seagrass bed 

(Gambi et al., 1990; Peterson et al., 2004; Backhaus and Verduin, 2008; Morris et al., 2008; 

Lefebvre et al.Σ нлмлύΦ 5ǳŜ ǘƻ ǘƘŜ ǎǳŘŘŜƴ ŘŜŎǊŜŀǎŜ ƛƴ ǾŜƭƻŎƛǘȅΣ ǘƘŜ ǿŀǘŜǊǎΩ ŀōƛƭƛǘȅ ǘƻ Ƴŀƛƴǘŀƛƴ 

particulate matter within the water column decreases, as explained by the Hjulstrom curve in 

Figure 1.  

 

Early work by Scoffin (1968) looked at the effects of sediment trapping and transportation by 

various plants with the use of an undŜǊǿŀǘŜǊ ŦƭǳƳŜΦ {ŎƻŦŦƛƴΩǎ ǊŜǎŜŀǊŎƘ reveal that the density and 

distance between leaf blades of Thalassia testudinum were important factors influencing the 

deposition or erosion of sediments, with dense patches experiencing sediment deposition and 

sparse patches, erosion. Such accumulations of sediments are the result of the decreased water 

velocity within the meadow (Fonseca and Fisher, 1986; Gacia et al., 1999; Gacia and Duarte, 

2001). This reduction in water velocity and subsequent increase in sediment deposition leads to 

an increase in the proportion of fine particles within the sediment, which has been observed in 
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many seagrass studies (van Keulen and Borowitzka, 2003; de Boer, 2007; Bos et al., 2007; van 

Katwijk et al., 2010). 

 

 

 

Figure 1: Hjulstrom Curve of erosion and deposition in uniform material (Taken from Beer, 1997) 

 

While it is generally accepted that seagrass accumulate and trap sediment, research conducted by 

Mellors et al. (2002) suggest that this is not entirely true. Their findings indicate that there was no 

difference in the accumulation of sediments or nutrients between low biomass ephemeral 

seagrass meadows and unvegetated sites, bringing the sediment trapping theory of seagrass into 

question. This suggests that the smaller, less dense, seasonal seagrass species do not reduce 

water flow enough for sedimentation to occur and that sediment trapping by seagrass may be 

species and location specific. Similarly, Paling et al. (2003) observed that dense Amphibolis 

transplants were unable to trap and accumulate sediment within a high energy environment and 

suggest that sediment trapping is dependent upon the hydrodynamic conditions that the seagrass 

is exposed to. 
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In addition to the tǊŀǇǇƛƴƎ ƻŦ ǎŜŘƛƳŜƴǘǎΣ ǎŜŀƎǊŀǎǎΩ also have the ability to stabilise and prevent 

the resuspension and erosion of sand (Gacia and Duarte, 2001; Bos et al., 2007; de Boer, 2007). 

The extensive rhizome mats of seagrass bind the sediment and keep it from being eroded, while 

the hydrodynamic conditions created by the leaf canopy also aid in preventing sediment 

resuspension, due largely to the reduction in turbulence within the meadow (Fonseca and Fisher, 

1986; Gacia et al., 1999; Gacia and Duarte, 2001). 

 

1.1.3 Carbon Sinks 

As seagrasses grow and photosynthesize they consume CO2 and convert it into complex sugars, 

which later get used in the construction of other plant structures (leaves, rhizomes and roots). In 

general, the bulk of the biomass for these structures, namely the rhizome and roots, are stored 

below-ground (Fourqurean and Zieman, 1991; Mateo and Romero, 1997), however, in some 

species, such as Amphibolis sp., the bulk of the biomass is in the above ground structures (Paling 

and McComb, 2000). As these structures die, ǘƘŜ ŎŀǊōƻƴ ǎǘƻǊŜŘ ǿƛǘƘƛƴ ǘƘŜƳ ōŜŎƻƳŜǎ ΨǘǊŀǇǇŜŘΩ 

within the sediment.  

 

Several studies have attempted to estimate the burial of carbon within seagrass habitats (Pollard 

and Moriarty, 1991; Gacia et al., 2002; Bouillon et al., 2004; Duarte et al., 2005 and Kennedy et 

al., In Press 2010). Values of burial ranging from 182.5 to 1569.5 grams of carbon per square 

meter per year were calculated for the seagrasses Enhalus acoroides, Syringodium isoetifolium, 

Cymodocea serrulata, Thalassia hemprichii and Cymodocea rotundata within the Gulf of 

Carpentaria, Australia (Pollard and Moriarty, 1991), while a value of 198 grams of carbon per 

square meter per year was calculated for Posidonia oceanica (Gacia et al., 2002). Duarte et al. 

(2005) attempted to calculate the average global carbon burial of vegetated habitats, with 

seagrass estimated to contribute 83 grams of carbon per square meter per year. A more recent 

study of the global contributions of seagrass burial by Kennedy et al. (In Press 2010) calculated 
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the annual global carbon burial rate at 41 to 66 grams of carbon per year from seagrass derived 

sources. 

 

While it is apparent that seagrass contribute directly to the sequestration of carbon from in situ 

decomposition, other studies have shown that a major proportion of the carbon from within 

seagrass habitats are derived from allochthonous or seston sources (Gacia et al., 2002; Kennedy 

et al., In Press 2010). These alternative carbon sources have been shown to contribute 72% (Gacia 

et al., 2002) and approximately 50% (Kennedy et al., In Press 2010) of the carbon burial in 

seagrass habitat respectively. An analysis of the difference in 13C and phospholipid fatty acids by 

Bouillon et al. (2004) in the seagrass and mangrove habitats of Gazi Bay, Kenya, also revealed that 

between 21-70% of the sedimentary carbon within the seagrass meadows was derived from the 

nearby mangrove habitat, indicating that the seagrassΩ act as an important carbon sink.  

 

With issues of increased greenhouse gas emissions and the effects of climate change being 

present-day concerns, knowing how much carbon these valuable marine habitats store and for 

how long becomes essential. The use of radiocarbon dating within Posidonia oceanica sediments 

have shown that carbon trapped within these seagrass habitats can be stored for as long as 3370 

years (Mateo et al., 1997), further indicating the importance of seagrass habitats as vital carbon 

sinks for the marine environment.  

 

1.1.4 Food Source 

Due to the high fibrous content and relatively low nutritional value of the seagrass leaves 

(Bjorndal, 1980; Duarte, 1990; Valentine and Heck, 1999), very few organisms feed directly on 

seagrass. Those that do, such as Dugongs (Dugong dugon) and Green Sea Turtles (Chelonia 

mydas), as well as some fish and invertebrates, account for approximately 10% of the seagrass 

consumed in the food web (Valentine and Heck, 1999). 
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Many studies have looked at the contributions seagrass makes through the food web with the use 

of carbon and nitrogen stable isotopes (Nichols et al., 1985; Peduzzi and Herndl, 1991; 

Kharlamenko et al., 2001; Vizzini et al., 2002; Hyndes and Lavery, 2005; Smit et al., 2005; Leduc et 

al., 2006; Nyunja et al., 2009). It is apparent from these studies that the carbon and nitrogen 

supplied directly from the seagrass contributes only a relatively minor component of the carbon 

and nitrogen within the different trophic levels (Hyndes and Lavery, 2005; Smit et al., 2005) and is 

consumed by only a select few invertebrates, such as some copepods, amphipods and polychaete 

worms (Hyndes and Lavery, 2005). The majority of the nutrient sources to the seagrass food 

network appear to be derived from the consumption of the seagrass detritus and associated 

epiphytic organisms (Vizzini et al., 2002; Hyndes and Lavery, 2005; Smit et al., 2005; Nyunja et al, 

2009). This is not too surprising as epiphytic algae can account from 40 to 90% of the primary 

productivity in some seagrass ecosystems (Pollard and Moriarty, 1991) 

 

A study by Leduc et al. (2006) looked at the seasonal variation of the importance Zostera 

capricorni within the food web. Their findings suggest that the seagrass contributes between 24 

to 99% of the diets of the consumers in the area with its importance as a food source shifting 

during the year, becoming more important during late winter. This suggests that the main food 

source of temperate seagrass ecosystems can shift from a detrital food web during the winter 

months to an algal/epiphytic based food web during summer. 

 

It has also been found that seagrass not only contributes to the benthic food web but can provide 

a food source to the planktonic food web (Thresher et al., 1992). Research by Thresher et al. 

(1992) found that nutrients derived from decomposing seagrass wrack that has been transported 

offshore provide a carbon source to the microbial community that fuels the food web for the 

larval Blue Grenadier (Macruronus novaezelandiae). Another study, conducted by Peduzzi and 

Herndl (1991), also found seagrass fuelled the production of free-living marine microbes through 
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monomeric carbohydrates that were leached out from the seagrass leaf wrack. Such productions 

of microbial organisms can therefore act as important food sources, but due to their consumption 

of seagrass derived carbon can also serve as a carbon sink, as was found in the water column 

above seagrass beds during the research by Kaldy et al. (2002). 

 

1.1.5 Nursery Grounds 

The sheltered conditions created within the seagrass meadows and highly productive seagrass 

and epiphyte community; provide perfect low energy environments for the early life stages of fish 

and invertebrate whilst also providing them with a valuable food source (Verweij et al., 2006). 

The complex structures created by seagrass also aids in the survival of many juvenile fish and 

invertebrate larvae with increased survival and lower predation frequently observed (Wahle et 

al., 1992; Rooker et al., 1998). Hyndes et al. (2003) suggested that smaller sized fish would inhabit 

seagrass with denser foliage with larger fish occupying less dense meadows, however research by 

Bell et al. (1987) and Worthington et al. (1991) showed that increased shoot density made little 

impact on the number of juvenile fish that were present with only a significant difference 

occurring between seagrass and unvegetated habitats.  

 

Seagrass also plays a pivotal role in the life cycle and subsequent development of many fish and 

invertebrate species, providing a source of new recruits to the adult population (Gillanders, 1997; 

Vance et al., 1998; Heck et al., 2003; Smith and Sinerchia, 2004). The use of stable carbon 

isotopes by Verweij et al. (2008) revealed that 98% of the reef fish Ocyurus chrysurus in the 

population would have originated from seagrass habitats. 

 

While it is typically accepted that nursery grounds promote the growth of juvenile and larval 

fauna, however the findings from a paper by Grol et al. (2008) on the growth of juvenile reef fish, 

found that the fish would have more food, and subsequently better growth if they fed within a 
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reef habitat rather than in seagrass or mangroves. The problem associated with such a statement 

is that the fish would be more exposed to predation and have a lower survival rate in reef 

habitats, suggesting that the fish have to balance a trade-off between better food sources in reef 

habitats and increased survival provided by the shelter from seagrass and mangrove habitats.  

 

1.2 Historic Changes of Seagrass Coverage in Cockburn Sound 

In 1954, seagrass in Cockburn Sound covered an estimated area of 4,195 hectares and by 1978; 

this had decreased to 889 hectares (Cambridge and McComb, 1984), a decline of approximately 

79.8 %. From the 19слΩǎ ƻƴǿŀǊŘ, increased industrial development occurred along the east coast 

of the sound, with increased effluent discharge from the CSBP oil refinery, sewage treatment 

plant, blast furnace, nitrogen and phosphorous fertiliser plants and the power station (Cambridge 

and McComb, 1984). The first large scale losses of seagrass were recorded in 1969 along the 

eastern shores before spreading through the rest of the embayment. Cockburn Cement also 

commenced shell-sand dredging for lime production at Owen Anchorage, Parmelia and Success 

Bank in 1972. From 1994 to 1996, 49 hectares of seagrass was removed by dredging 

(Environmental Protection Authority, 1996) and 168 hectares of seagrass during 2002 to 2010 

(Oceanica, 2009b).  

 

Construction of the Garden Island causeway after 1970, resulted in seagrass loss on Southern 

Flats and also restricted water flushing within Cockburn Sound by much as 40 % (Cambridge and 

McComb, 1984; Cockburn Sound Management Council, 2003). By 1999, the estimated 

seagrass coverage in Cockburn Sound was 661 hectares (Kendrick et al., 2002), which constitutes 

an 84.2 % decrease from 1954.  

 

In 1982, high levels of heavy metals (Talbot and Chegwidden, 1982) and petrochemicals 

(Alexander et al., 1982) were found in Cockburn Sound and its associated fauna. This is of 
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concern, as research has shown that heavy metals (Ralph and Burchett, 1998 a; Macinnis-Ng and 

Ralph, 2002) and petrochemicals (Cambridge et al., 1986; Ralph and Burchett, 1998 b; Macinnis-

Ng and Ralph, 2003) have neƎŀǘƛǾŜ ƛƳǇŀŎǘǎ ƻƴ ǘƘŜ ǎŜŀƎǊŀǎǎΩ growth and ability to 

photosynthesize. While these pollutants would have caused localised death and decreased 

growth in some areas (Cambridge and McComb, 1984), Cambridge et al. (1986) indicated that it 

was unlikely to be the source of the wide spread loss in Cockburn Sound. However this would 

have contributed additional stress to the seagrasses making them more vulnerable to other 

stressors. 

 

In an attempt to explain the extensive loss of seagrass which occurred, Cambridge et al. (1986) 

conducted several field and laboratory experiments to try and determine the cause. Seagrass 

transplant trials were used both in Cockburn Sound and Warnbro Sound to see how the seagrass 

survived. The transplants within Warnbro Sounds took hold and grew well, while those within 

Cockburn Sound experienced little growth and became matted with large amounts of epiphytes. 

Cambridge et al. (1986) concluded that the wide scale losses in seagrass could be the result of 

eutrophication, which occurred shortly after the discharge of effluent from the fertilizer factory 

commenced in 1969 (Cambridge and McComb, 1984).  

 

Silberstein et al. (1986) examined epiphyte loads on seagrass beds near the effluent outfall and 

found epiphyte biomass to be 2-8 times higher than those of unaffected meadows. This was also 

supported by Cambridge et al. (2007) through a retrospective analysis which found strong 

correlations between the presence of particular epiphytes and the seagrass losses which 

occurred. Other small and isolated losses in seagrass have occurred in Cockburn Sound around 

Mangles Bay, as well as Warnbro Sound, and at Rottnest Island in boat anchorage areas (Walker 

et al., 1989; Hastings et al., 1995). These losses are the result of the scouring of the seabed from 
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mooring chains which create 3-300 m2 circles of devegetated seafloor as the boat and mooring 

chain swings around with the changing winds and tides (Walker et al., 1989).  

 

While only relatively small and highly localised areas of seagrass are removed by this process, 

once the number of boat moorings present within the area is taken into consideration, the overall 

loss of seagrass from this becomes more substantial. In total, 151 of 253 boat moorings were 

found within seagrass meadows in Cockburn Sound, resulting in a total loss of 1.8 hectares, 

approximately 1.9 % (Walker et al., 1989). While this is only a relatively minor loss, it does 

however, increasingly subject seagrass to the effects of waves and swell which can result in 

blowouts and increased scouring (Walker et al., 1989; Hastings et al., 1995).  

 

Despite the widespread loss of seagrass coverage in Cockburn Sound, localised recolonisation on 

Success and Parmelia Banks has also been recorded (Kendrick et al., 1999; Kendrick et al., 2000). 

Research by Kendrick et al. (1999) showed, with the use of aerial photos, that from 1972 to 1993 

the seagrass on Success and Parmelia Banks had increased some 20,000 to 30,000 square meters. 

A more detailed study revealed that the seagrass on Success Bank had increased from 507 

hectares in 1965 to 1036 hectares in 1995 (Kendrick et al., 2000). The same study also showed 

that the seagrass on Parmelia Bank experienced little change in coverage with 735 hectares 

present in 1965 decreasing to 699 hectares in 1995. It was also observed that the seagrass 

increased on the western side of Parmelia Bank and decreased in the east which was a result of 

the shell-sand mining which had taken place in the area. 

 

Work by Campbell (2003) into the recruitment of Posidonia australis and P. coriacea propagules 

on Success Bank showed that, on average, 55 seagrass propagules established per hectare per 

year; however only 69 % of those survived to the end of the 23 month long study. Campbell also 

observed that no seagrass seedlings recruited at the site; though at a nearby site, as many as 39 
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seedlings recruited per month, which suggests that recolonisation and recruitment of seagrass 

was taking place. While these isolated areas have experienced some natural regrowth the rest of 

Cockburn Sound has shown very little and it has been suggest that the embayment had been 

modified to a state no longer suitable for natural seagrass recovery (Kendrick et al., 2002). 

 
 
1.3 Transplantation Efforts in Cockburn Sound 

Following the extensive loss of seagrass within Cockburn Sound, substantial efforts were made to 

increase their natural recovery and trialling different methods of transplantation, such as manual 

(seedlings, plugs and springs) and mechanical (sods) methods, to enhance their survival and 

growth. Attempts were made at using seagrass seedlings as a means of replanting the lost 

seagrass meadows in Cockburn Sound (Kirkman, 1998). This was done using seedlings and sprigs 

of Posidonia australis, P. sinuosa, P. angustifolia and P. coriacea seedlings and Amphibolis 

antarctica and A. griffithii seedlings and sprigs, all of which yielded poor survival. In the space of a 

year, all the Posidonia seedlings had died and had a dense covering of epiphytes. At the end of 

seven months all of the Amphibolis sprigs had died, while the seedlings persisted for 17 months 

before dying or being washed away. 

 

In 1993, attempts were made to trial staple and plug transplantation methods with A. griffithii  

and P. sinuosa at Carnac Island and to see the effects of stabilising the sediment with plastic mesh 

on different sized transplants (van Keulen et al., 2003). It was found that the staple method was 

an ineffective way of transplanting the Amphibolis seagrass with all the transplants dying, 

regardless of the planting size or the presence of the plastic matting. The plug method on the 

other hand showed a significant interaction between the size of the transplanted plugs and the 

presence of the sediment stabilizing mat, with larger plug sizes having a greater survival rate 

when the plastic mesh was surrounding them (van Keulen et al., 2003). While the plug method of 
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transplantation provided better survival, the P. sinuosa transplants still fared poorly in 

comparison to A. griffithii .  

 

Later in 1997 Paling et al. (2000) investigated the survival of A. griffithii plug transplants at 

different depths on Success Bank. In all, 580 15 cm diameter plugs were planted at 5, 6, 8 and 10 

meter depths and monitored over 14 months. The results indicated that there was no significant 

change in transplant survival in response to the different depths, with all the transplants 

exhibiting at least a 95 % survival rate during the first few months, before survival decreased 

dramatically during the winter storms. 

 

Following the success of the plug transplantation experiments, which showed that larger plugs 

survived better than small transplants, mechanical transplantation was also trialled on Success 

Bank using the ECOSUB1 described by Paling et al. όнллмŀύΦ мΣрлл άǎƻŘǎέ лΦнр Ƴ2 in size were 

planted using Posidonia sinuosa, P. coriacea and Amphibolis griffithii. Survival varied between the 

Posidonia and the Amphibolis transplants with P. sinuosa and P. coriacea having 76.8 % and 75.8 

% of transplants survive respectively while A. griffithii experienced 44.3 % over a two year period. 

Despite the differences in survival all the transplants exhibited some growth two years after 

transplantation (Paling et al., 2001a). 

 

A further study was implemented using the ECOSUB2 (Paling et al., 2001b), a modified version of 

the ECOSUB1 described by Paling et al. όнллмŀύΦ ¢Ƙƛǎ ƛƳǇǊƻǾŜŘ ƳŜǘƘƻŘ ǘǊŀƴǎǇƭŀƴǘŜŘ нул άǎƻŘǎέ 

of 0.55 m2 size in early 2000 and by June that year, all the transplants exhibited a 100 % survival 

rate. Continued monitoring of the transplants from Paling et al. (2001a) revealed that the 

seagrass was averaging a 70 % survival rate three years after transplantation (Paling et al., 

2001b).   
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Research that followed on from these studies looked at the effects of the transplants spacing on 

ǘƘŜ ǎŜŀƎǊŀǎǎΩ survival (Paling et al., 2003). It was found that the spacing of the 0.55 m2 transplants 

had no signƛŦƛŎŀƴǘ ŜŦŦŜŎǘ ƻƴ ǘƘŜ ǎŜŀƎǊŀǎǎΩ survival with all the transplants experiencing greater 

than 90 % survival during the first four months. Survival then decreased to between 9 and 40 % 

over the winter months due to mortality from storm events (Paling et al., 2003). Despite the 

ǘǊŀƴǎǇƭŀƴǘƛƴƎ ƳŜǘƘƻŘΩǎ ƛƴƛǘƛŀƭ ƘƛƎƘ ǎǳǊǾƛǾŀƭ ŀƴŘ recovery rate, its expensive operating costs, in the 

order of AU$200 per transplant, made it a non-viable means of seagrass restoration. 

 

The poor survival of transplants on Success Bank seemed to be the result of the highly dynamic 

sediments within the high wave energy environment (Paling et al., 2000; Paling et al., 2003). 

Campbell and Paling (2003) attempted to test whether the use of an artificial seagrass mat would 

increase Posidonia australis transplant survival within this environment. They discovered that 

habitat enhancement in the form of sediment stabilisation improved transplant survival by 50 % 

in 60 % of the P. australis transplants.  

 

Posidonia sinuosa, as the dominant meadow-forming species within Cockburn Sound, formerly 

comprised 80 % of the seagrass coverage (Cambridge and McComb, 1984). Therefore ensuring 

the recovery of this species was of vital importance. Paling et al. (2007) conducted research into 

assessing the most effective methods and locations for the survival and re-colonization of P. 

sinuosa. They trialled both sprig and plug transplantation methods at differing depths and 

ƳƻƴƛǘƻǊŜŘ ǘƘŜ ǎŜŀƎǊŀǎǎΩ ǎǳǊǾƛǾŀƭΦ ¢ƘŜ Ŧindings indicated that the plug method was the most 

successful when compared to the sprig method and that the survival of transplants was greater 

for both methods at the shallower three meter depth. While survival was greater in the plug 

transplants, the authors indicated it was also the more costly method to implement and 

suggestŜŘ ǘƘŀǘ ǘƘŜ ǎǇǊƛƎ ƳŜǘƘƻŘΩǎ Ŏƻǎǘ-effectiveness would outweigh its lower survival rate. 
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Large scale rehabilitation of the seagrass meadows was implemented during the summer of 2004 

using the sprig planting method for Posidonia australis on Southern Flats.  From 2004 until 2011, 

three hectares of manually transplanted P. australis sprigs were planted over the south eastern 

corner of Southern Flats (Oceanica, 2011). Both the middle and western areas experienced high 

survival rates of  more than 85 %, while the eastern hectare exhibited a 23 % survival rate 

(Oceanica, 2011); since then the eastern hectare has been replanted with additional sprigs to help 

recoup the losses. 

 

1.4 Assessment of Ecosystem Functionality 

1.4.1 Global Perspective 

As seagrass declines have occurred worldwide a variety of different species have been affected. 

To tackle this, a variety of different transplantation methods have been used, with as many 

different methods and techniques utilised as there are species which have been affected. Survival 

of the transplants varies considerably between the different methods, seagrass species and 

hydrodynamic conditions in which they inhabit. As such the time taken for the transplants to 

recover to a state comparable to a natural meadow can vary considerably. 

 

In most instances assessing seagrass recovery involves monitoring the shoot density or rate of 

horizontal rhizome growth. While monitoring these components of the seagrass is vitally 

ƛƳǇƻǊǘŀƴǘΣ ǘƘŜȅ ƻƴƭȅ ǇǊƻǾƛŘŜ ƛƴǎƛƎƘǘ ǘƻ ǘƘŜ ǊŜŎƻǾŜǊȅ ƻŦ ǘƘŜ ǎŜŀƎǊŀǎǎΩ ǎǘǊǳŎǘǳǊŀƭ ŎƻƳǇƭŜȄƛǘȅΦ ¢ƻ 

determine whether the transplanted seagrass has fully recovered to a state comparable to 

natural meadows, assessment of the recovery of all the seaƎǊŀǎǎΩ ŜŎƻǎȅǎǘŜƳ ŦǳƴŎǘƛƻƴǎ ƛǎ ǊŜǉǳƛǊŜŘΤ 

something which has currently been inadequately studied.  

 

Despite numerous studies which have looked at optimizing the survival and growth of transplants 

only a few have tried to assess the recovery of different ecosystem functions. Bell et al. (2008) 
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looked at the recovery of Halodule wrightii transplants and found that while some transplants 

obtained shoot densities and biomasses comparable to those of natural meadows, the rate of 

seagrass expansion was much less. An earlier study by Sheridan (1998) looked at H. wrightii 

ǘǊŀƴǎǇƭŀƴǘǎ ŀƴŘ ǿƘŜǘƘŜǊ ŎŜǊǘŀƛƴ ŦǳƴŎǘƛƻƴǎ ƘŀŘ ǊŜǘǳǊƴŜŘΦ {ƘŜǊƛŘŀƴΩǎ ŦƛƴŘƛƴƎǎ ǊŜǾŜŀƭŜŘ ǘƘŀǘ ŀŦǘŜǊ 

three to four years the transplant sites structurally resembled nearby natural meadows, as did 

the benthic fauna. After three years, the seagrass biomass as well as fish and decapods 

abundances matched those of the natural meadows. However, monitoring of the sediment 

revealed that the composition was much coarser within the transplant sites than the natural 

meadow, indicating that fine sediments had yet to reach levels found in the natural sites. Both 

Sheridan (1998) and Bell et al. (2008) expressed the need for monitoring of seagrass recovery to 

occur over an extended period of time in order to assess the ǊŜǘǳǊƴ ƻŦ ŀƭƭ ǘƘŜ ǎŜŀƎǊŀǎǎΩ ŜŎƻƭƻƎƛŎŀƭ 

functions. 

 

One such study, which implemented long term monitoring of the seagrass transplants was by 

Evans and Short (2005), who monitored the return of ecosystem functions in Zostera marina 

transplants over a nine year period. Their aim was to monitor the return of the seagrass 

ecosystem functions, then fit trajectory models to them to see if they could predict when 

particular functions would return. Their findings indicated that within four years, the biomass, 

leaf length, leaf area index and fish diversity had all recovered to levels comparable to the natural 

meadows and could be predicted using trajectory models. However, even after nine years, the 

sediment composition within the transplants did not resemble that of the natural meadow 

controls, although it was within the known ranges for Z. marina. These findings along with those 

of Sheridan (1998), indicate that not all ecosystem functions return within the same timeframe, 

and can differ both within and between different species. Furthermore, these studies also 

highlight the need for long term monitoring of seagrass transplants beyond the normal range of 

most projects. 
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In some cases, the recovery of the seagrass and its ability to providing habitat and refuge for 

marine organisms is of high interest; such was the case with the research conducted by Smith et 

al. (1988). Their research into whether newly transplanted Zostera marina provided suitable 

habitat for the scallop Argopecten irradians, a commercially important species, revealed low 

numbers of the scallop residing within the transplant site compared to the natural meadow, a 

result they attributed to predation due to the patchy coverage which the transplanted seagrass 

provided. This indicates that the mere presence of seagrass does not constitute suitable habitat 

for organisms and that time is needed for the seagrass to recover before such functions can be 

provided. 

 

The recovery of the seagrass is paramount to the survival of many important commercial fish and 

invertebrate species, with many of them utilising seagrass for shelter and food; in most cases the 

food source that the seagrass provides takes on the form of macrobenthic infauna. Whilst acting 

as a food source the infauna also provide valuable insight to other environmental processes 

within the seagrass, including water quality and sediment composition (Saether, 1979; Cardoso et 

al., 2007). As such, monitoring of the infauna should be of high priority; however studies that 

have looked at whether such infaunal communities have recovered to naturally occurring levels 

has yielded varying results (Sheridan, 1998; Pranovi et al., 2000; Sheridan et al., 2003; Evans and 

Short, 2005). 

 

Pranovi et al (2000) found that 1.5 years after transplantation, the benthic fauna within the 

seagrass, Cymodocea nodosa, had obtained levels which matched those of nearby natural 

meadows. Sheridan et al (2003), on the other hand, discovered that even three years after 

transplantation, the benthic infauna in Halodule wrightii were still noticeably distinct from those 

of natural meadows. It has been suggested by Sheridan (1998) that fully restored infauna 

communities may be dependent on the sediment composition and the content of fine organics. 
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With different species of seagrass trapping sediment at different rates (Fonseca and Fisher, 1986), 

the time taken for the infauna within different meadows to recover would therefore differ. 

 

1.4.2 Cockburn Sound Perspective 

Despite the extensive transplantation work which has taken place in Cockburn Sound (Kirkman, 

1998; Paling et al., 2001ab; Campbell and Paling 2003; Paling et al., 2003; van Keulen et al., 2003; 

Paling et al., 2007; Oceanica, 2011), very little work has looked at whether or not these seagrass 

transplants have regained their ecosystem function. In 2006, a preliminary study of the return of 

ecosystem functionality in Posidonia sinuosa transplants within Cockburn Sound was conducted 

(Kenna et al., 2006). However, due to the lack of replicate sites, the data were not formally 

analysed. Despite this, the results from the preliminary study showed that five years after 

transplantation the percentage cover, shoot density and leaf length, were very similar between 

the transplanted P. sinuosa and the natural meadow. 

 

Sediment trapping was also assessed within different density sprig transplants of Posidonia 

australis on Southern Flats, as part of a PhD dissertation by Chisholm (unpublished). The research 

indicated that both the higher density 0.25 and 0.125 m spaced transplants showed increased 

accretion of sediments while the lower density 0.5 and 1 m spaced transplants experienced more 

sediment erosion (Verduin et al., 2007). Experimental manipulation of shoot density within the 

natural meadows revealed that densities greater than 50 % cover experience sediment accretion 

while no significant change was seen in sediment height at lower densities. This indicates that the 

transplanted P. australis is trapping sediment; however it still remains to be seen if it is doing so 

at the same rate as that found in natural systems. 

 

Horn et al. (2009) looked at the photosynthetic recovery of sprig transplanted Posidonia sinuosa 

within Cockburn Sound using chlorophyll fluorescence. Their findings showed that after three 
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months post-transplantation the maximum electron transport rate and effective quantum yield, 

used as proxies for photosynthesis, had fully recovered in relation to the control site. However as 

this study only examined individual sprigs in relation to those of a fully functioning meadow, the 

recovery of the transplant meadow as a whole would take considerably longer as the 

photosynthetic productivity would be dependent on shoot density. 

 

While there has been work done on the macrobenthic communities within Cockburn Sound 

(Brearley and Wells, 2000; Oceanica, 2009a), as yet there has been little done within the 

transplanted seagrass. It is therefore the purpose of this study to fill a gap in the knowledge 

surrounding the transplanted seagrass within Cockburn Sound, focusing on the recovery of the 

macrobenthic community within transplanted Posidonia australis on Southern Flats.  

 

1.5 Project Aims 

Following on from the extensive rehabilitation work conducted on Southern Flats, this project 

aims to assess the ecosystem recovery of the transplanted Posidonia australis sprigs with respect 

to the macrobenthic infauna. The primary goals of the project were to: 

1) Determine if the infauna present within the transplants resemble those of nearby natural 

meadows 

2) See if the infauna are present in the same abundances as those in natural meadows 

3) Determine if there is any edge effect impacting on the infauna 

4) Determine if any of the infauna can be used as potential indicator species to indicate the 

recovery of the infauna community within the transplanted seagrass 

The secondary goal of the project was to: 

5) Compare the sampling effectiveness of two different sediment samplers  
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2. Method 
2.1 Site Description 

Cockburn Sound is a sheltered coastal embayment located in the south west region of Western 

Australia. The area is protected on the western seaward side by Garden and Carnac Island and by 

Point Peron to the south. A 4.2 km rock wall causeway extends out from Point Peron northward 

to Garden IslandΩs southern end; the causeway includes two small trestle bridges (613 and 304 m 

wide) that allow for restricted water flow in and out of the embayment. The causeway also 

provides shelter from prevailing winds and sea swell while shallow areas around Success and 

Parmelia Bank in the north provide a buffer against large waves and swell. Despite this the 

northern margin of Cockburn Sound is still very open to the wind, with strong north and north-

westerly winds generating wind-waves which make conditions in Cockburn Sound very rough. 

 

Mixing in the embayment is largely wind driven with little impact from the very small semidiurnal 

tides, which rarely exceed 0.5 m. The water is very shallow, ranging from 2-9 m deep in areas 

such as Parmelia Bank, Success Bank and Southern Flats, and around 20-25 m in the central basin. 

The south eastern edge of Southern Flats is situated in relatively shallow water, which ranges 

from 2-3 m in depth. The area is comprised of soft sediments colonised by sparse patches of 

Posidonia australis with some intermixed P. sinuosa, while the western and northern areas of 

Southern Flats are covered by large expanses of Posidonia meadows. 

 

Southern Flats south-eastern end is the location of extensive seagrass restoration effort with 

three hectares of hand transplanted P. australis covering the seafloor. The transplanting was 

initiated in the western section from 2004 to 2005 with one hectare being planted. During 2005 

and 2006 the middle hectare (containing the site for this study) was planted and over 2006 to 
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2007 the eastern hectare was planted. Using seagrass cuttings collected from a donor site at 

Success Bank, shoots were planted every 0.5 m. The areas of interest for this study were four 5 x 

5 m experimental transplant plots located in the north-western corner of the middle hectare of 

the transplant meadow (Figure 2). Plots were planted out at different densities with shoots 

planted every 1, 0.5, 0.25 and 0.125 m. In addition to these sites were three control sites, 

including a bare sand site, natural fragmented meadow outside of the transplant site (Natural 

Meadow 1) and a natural fragmented meadow within the transplant site (Natural Meadow 2). 

 

 

Figure 2: Aerial photo of study area on Southern Flats, Cockburn Sound looking North-West. Area outlined in black 
shows the 3 hectare area of transplanted seagrass, the yellow outlined areas show the experimental plots 
and the red outlined area shows the control sites. (Image by Jennifer Verduin, taken at 300 m, on 
18/4/2010 at 9:19 am). 

 

2.2 Control Site Selection 

Aerial photos were used to provide estimates of the size and distance of natural seagrass patches 

to determine if they could be used as possible control sites for the study. A high resolution, 

georeferenced, aerial photo of Southern Flats taken in 2008 (supplied by Oceanica Consulting Pty 
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Ltd) was used in conjunction with a non-georeferenced aerial photo of Southern Flats in 2010. 

Three control sites were needed for the study, one on bare sand, one of a natural P. australis 

patch outside the transplantation site and one from within. Seagrass patches were only 

considered if they met the following three conditions: 

  1). Were natural Posidonia australis patches 

  2). Able to fit a 5 X 5 m plot within them 

  3). Less than 100 m from the four experimental plots 

Once control sites had been selected from the aerial photos they were assessed in the field to 

determine their suitability. If all the conditions were met then the site was marked out with metal 

stakes and roped off. 

 

2.3 Sampling Methodology 

The layout of the study area was made prior to the commencement of this project and was 

designed for another experiment, so its design was not ideal for this particular project. As a result 

it was not possible to have replicate experimental plots and so sub-samples were taken from each 

of the seven plots. The sampling was conducted over the winter from the 12th of May until the 

22nd of June, 2011, and provides a snapshot in time of how the infauna has recovered compared 

to nearby natural meadows. 

  

2.3.1 Sample Collection 

Each of the seven 5 x 5 m plots were separated into three zones, the outer zone (1 meter in from 

the edge), middle (2 meters in from the edge) and centre (3 meters in from the edge), with 12, 8 
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and 4 shoot count measurements taken from each zone respectively to provide an accurate 

representation of each edge zone based on their relative sizes. Each of the shoot counts was done 

using a 0.25m2 quadrat by divers on scuba; each quadrat was laid out in the manner shown in 

Figure 3. In addition to the shoot counts, sediment cores were also taken using a 55 mm PVC 

hand corer with a serrated edge to a depth of 15 cm, labelled and placed into calico bags. Twelve 

sediment cores were taken from each site, with 4 samples taken in each of the outer, middle and 

centre zones as indicated by the gray shaded squares in Figure 3. Missing and incorrectly labelled 

samples were excluded from the analysis. Samples were stored in a freezer at -20°C until they 

were needed. 

 

A venturi suction sampler was also compared against the hand corer to determine which method 

would be most suitable for this study. Unfortunately due to time constraints and long sample 

processing times the hand corer was selected before the samplers relative effectiveness could be 

assessed. The impromptu selection of the hand corer over the suction sampler was based on its 

ease of use and relatively consistent sample sizes; however a more detailed analysis of the 

ǎŀƳǇƭŜǊǎΩ ŜŦŦŜŎǘƛǾŜƴŜǎǎ ƛǎ ƎƛǾŜƴ ƛƴ ǘƘŜ ƴŜȄǘ ŎƘŀǇǘŜǊΦ 

 

2.4 Sample Processing 

2.4.1 Infauna Processing 

Sediment samples were thawed out and later transferred into plastic bags for preservation. This 

was done by collecting the sediment into one corner of the calico bag then inverting the contents. 

Approximately 300 mL of seawater was then poured over the calico bags to remove the 
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remaining sediment and infauna clinging to the sides. 40 mL of 37.5 % formalin was then added to 

the samples in the plastic bags to create a 5 % Formalin buffered seawater solution, with 1 mL of 

5 % Rose Bengal added to stain the infauna. The samples were then left for a minimum of 24 

hours to allow adequate time for the infauna to be fixed and stained before analysis. 

 

 

Figure 3: Layout of where the shoot counts were taken with the 0.25 m
2 
quadrats, gray shaded squares indicate the 

samples where sediment cores were taken. 

 

 After fixing and staining, the sediment was tipped into a beaker so that the volume of sediment 

could be recorded. Large pieces of shell and seagrass material were removed and placed into a 

small dish; the sediment was then left to settle out so an accurate measure of the sediment 

volume could be taken. The sediment samples were then tipped into a 500 micron sieve and 
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washed until the bulk of the fine sediments were removed. The contents of the sieve were then 

washed into a shallow tray and filled with enough water to submerge the sediment. The tray was 

then agitated to get the infauna suspended before pouring them back into the 500 micron sieve 

leaving the sediment behind; the tray was then refilled with water and the process repeated.  

 

The contents of the sieve were then washed into a small dish and filled with water. Infauna were 

then removed using fine tipped tweezers and placed into 50 mL containers of 70 % ethanol so 

they could be later identified. The tray of sediment was then searched thoroughly for any 

remaining infauna, which were likewise removed using tweezers and placed into the container of 

ethanol. All the invertebrates, where possible, were identified to family level using dissecting and 

ocular microscopes and where then enumerated. A comprehensive list of texts and references 

used to identify the infauna is given in Appendix 1. Only intact infauna, with identifiable 

characteristics were included within the analysis; all fragments and lost limbs were excluded. 

 

2.4.2 Processing Effectiveness 

In an attempt to gauge the effectiveness of the processing methodology, 44 samples were split 

into two sub-samples. The first sub-sample contained the infauna removed from the tray while 

the second sub-sample containing the infauna from the sieve. Separating the samples in this 

manner allowed the percentage of different infauna removed by the washing process to be 

calculated. This thereby provided an estimate of how effective the washing process was. In 

addition to determining what percentages of infauna were removed by the washing process an 

additional 15 samples were selected to determine the overall effectiveness of the sample 

processing. This was done by having a second person search through the samples after the initial 

sorting had taken place and removing any infauna missed by the first attempt. 
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2.5 Statistical Analysis  

To determine whether any of the transplanted seagrass plots had recovered in terms of their 

overall structural complexity (i.e. shoot density), a one-way ANOVA was used to compare the 

shoot densities of the four experimental plots and the two natural meadows. A post hoc Tukey 

HSD analysis was also conducted to determine which of the experimental plots had shoot 

densities similar to the natural meadows. The diversity and evenness of the benthic fauna in each 

of the transplant plots were assessed using the Shannon-²ƛŜƴŜǊ 5ƛǾŜǊǎƛǘȅ ŀƴŘ IŜƛǇΩǎ 9ǾŜƴƴŜǎǎ 

Indices and where compared to each other using a one-way ANOVA and a post hoc Tukey HSD 

analysis.  

 

Similarity of the infauna abundances were analysed using the program Primer 6 (Clarke, 1993). 

Both MDS plots and an ANOSIM analysis were performed on the data to determine how similar 

each of the experimental transplant and control sites were to each other in terms of their infauna 

abundances. This was achieved by doing a square root transformation on the infauna abundances 

and using the Bray-Curtis similarity index. SIMPER analyses were performed on the data to 

determine which of the infauna families were contributing to the bulk of the similarity. 
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3. Sampler Considerations  
3.1 Introduction 

With a variety of different methods available to sample infauna and with each method having its 

own advantages, knowing which one to use becomes an important decision requiring careful 

consideration. The different methods of sampling infauna include hand corers, suction samplers 

and grabs (e.g., van Veen, Ekman); the aims of the study will determine which method will be 

most appropriate.  

 

Consideration is also needed on the size of the sampling device in determining how large an area 

the sampling device needs to sample. Lewis and Stoner (1981) examined the effects of using hand 

corers of varying diameter on the type and abundance of infauna collected. This study found that 

the smaller 55 mm diameter hand corer collected significantly more infauna than 76 or 105 mm 

corers and that the two larger corers underestimated the densities of many numerically abundant 

infauna species. This was attributed mainly to the difference in the number of samples taken 

using each corer, with the 55 mm corer having more samples and therefore having a greater 

chance of sampling a dense infauna aggregation (Lewis and Stoner, 1981).  

 

Similar results were also found in a study by Borg et al. (2002), who compared infauna 

assemblages using 25, 35 and 45 cm diameter corers within Posidonia oceanica meadows. The 

study concluded that smaller diameter corers provide better estimates of infauna abundances 

compared to those with larger diameters. Given this, it can then be said that having many small 

samples taken further apart allow for patchy distributed infauna to be more accurately 

represented. A smaller diameter corer would also be more advantageous in that the processing 
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time of the samples would be shorter due to the smaller volume of sediment in the sample, a 

finding also shown by Borg et al. (2002). 

 

While choosing the appropriate sample area or diameter of the sampling device is an important 

decision, the depth to which the chosen method samples is just as important. Research has 

shown that the majority of infauna occupies the top five centimetres of the substrate (Lie and 

Pamatmat, 1965; Lewis and Stoner, 1981; Hines and Comtois, 1985; Weston, 1990; Filgueiras et 

al., 2007; Cardoso et al., 2010) and decreases thereafter. It is therefore important to select a 

sampling method which will allow for sufficient penetration into the sediment in order to collect a 

representative sample of the infauna present; however the appropriate depth needed will vary 

depending on the aims and purpose of the study. 

 

Examination of the effectiveness of different Ekman samplers by Blomqvis (1990) indicated that 

not all the samplers were reliable at sampling the sediment as many of them produced 

inadequate sample sizes due to mechanical flaws (i.e. tilting and sediment resuspension or loss). 

An earlier study by Paterson and Fernando (1971) compared the use of Ekman grabs and hand 

corers at sampling macrobenthic communities. Their findings showed that the hand corer was 

more efficient at capturing infauna than the Ekman grab, however the corer was less effective at 

sampling the less common or rare species. As well as being the less efficient sampling method the 

Ekman grabs are also restricted to sampling within soft sediment environments as any large rocks, 

shell, seagrass or coral would prevent the jaws of the trap from closing shut and result in the loss 

of sediment and infauna.  
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Christie (1976) looked at the effectiveness of a diver operated suction sampler and found it to be 

85 % effective at sampling both the common and rare infauna. A later study by Stoner et al. 

(1983) compared the effectiveness of a sediment corer and suction dredge at sampling infauna in 

both vegetated and unvegetated habitats. This research revealed that the hand corer was more 

effective at sampling the infauna than the suction dredge. However, there was a difference in the 

number of samples taken between the two methods (28 hand cores versus two suction samples), 

which would have impacted on the accuracy of the infauna abundances. With substantially more 

samples taken with the hand corer the chances of sampling a high abundance infauna patch are 

greater and would result in a higher abundance estimate. 

 

While all these sampling methods have their own advantages, only a few would be feasible for 

consideration in this study. The grab samplers such as the van Veen and Ekman grabs would not 

be viable options for sampling within the seagrass habitats. This is because the seagrass rhizome 

would prove too difficult for the grabs to penetrate through and would also obstruct the sampler 

when closing shut, resulting in sediment and infauna loss (Short and Coles, 2001; Southwood and 

Henderson, 2000). 

 

This chapter looks at assessing two different methods of sampling infauna, the hand corer and a 

venturi suction dredge. To ensure a fair assessment of the two sampling methods, an equal 

number of samples were collected using both the hand corer and suction dredge. In addition, 

both samplers had the same internal diameter and were sampled to the same depth to ensure 

that both methods were comparable in all respects. Samplers were compared in a similar manner 

to Stoner et al. (1983) in both bare sand and seagrass habitats and assessed on the number and 

abundance of infauna families sampled, as well as measures of diversity and evenness. 
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3.2 Method 

3.2.1 Sampling Methodology 

To compare the hand corer and suction dredge a total of 24 sediment samples (12 hand cores and 

12 suction samples) were taken from each of the sites as shown in Figure 3. Missing samples and 

incorrectly labelled samples were excluded from the analysis. Sediment samples were taken using 

a venturi suction dredge and a PVC hand corer (Figure 4). Both samplers had an internal diameter 

of 55 mm and sampled to a depth of 15 cm. For each sample, the hand core and suction dredge 

samples were taken as close to each other as possible to minimize any spatial differences in the 

infauna abundance and composition between the two sampling methods. 

 

Figure 4: The two sediment ǎŀƳǇƭŜǊǎΩ trialled for the study. (Left) Venturi suction dredge with air supplied by the 
SCUBA tank, (Right) PVC hand corer with serrated edge and rubber plug. 
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The hand corer was inserted into the sediment to a depth of 15 cm then sealed at the top with a 

rubber plug, the sediment core was then removed and transferred into a calico bag and labelled. 

A calico bag was attached to the end of the venturi suction dredge to collect the sediment that 

was air lifted up and was held in place with an adjustable metal hose clamp. Once the suction 

sample had been taken the air to the dredge was turned off and the suction dredge turned upside 

down to allow any sediment in the pipe to settle down into the calico bag. The calico bag was 

then detached from the suction dredge and labelled. All samples were stored, preserved, stained 

and processed in the same manner described in the previous chapter. 

 

3.2.2 Sampler Issues and Considerations: 

A number of different issues became apparent in the field when trialling the suction dredge for 

collecting the sediment samples. While some of these problems were easily fixed others proved 

to be more problematic and compromising to the project. The issues associated with the sampler 

and the actions taken to account for them are explained here: 

 

Buoyancy 

Due to the trapping of air in the calico bag the suction dredge became positively buoyant and 

would lift away from the sediment. To counteract this, a six pound dive weight was attached to 

the sampler to help keep it negatively buoyant and in contact with the substrate. 

 

Faulty Equipment 

As the suction dredge requires more complicated equipment and parts for it to work the chances 

of faults occurring with the equipment are more likely. During the field trials a couple of faults 
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occurred with the suction dredge, the first being leaks from joints and connectors in the hose 

which supplied air to the suction dredge. To solve this problem thread tape was used around all 

the joints and connectors to provide a more air tight seal. The second problem was with the air 

cylinders, as several of the o-rings burst on the tanks resulting in costly delays in the field work 

due to having to replace the o-ring seals. As a result, spare equipment was needed on the boat to 

ensure that any faults with the gear could be fixed or replaced; however the extra gear ended up 

occupying a lot of space on the boat. 

 

Cumbersome 

¢ƘŜ ǎǳŎǘƛƻƴ ŘǊŜŘƎŜΩǎ ōǳƭƪȅ ǎƛȊŜ ŀƴŘ ǘƘŜ ŀŘŘŜŘ ǿŜƛƎƘǘ ƻŦ ŎŀǊǊȅƛƴƎ ŀǊƻǳƴŘ ǘƘŜ ŀƛǊ ŎȅƭƛƴŘŜǊ ŀƭƻƴƎ 

with other sampling gear and sample bags made using the dredge rather difficult. To effectively 

sample the sediment the suction sampler required two divers to operate it, compared to the 

hand corer which could be used with ease by a single diver. 

 

Area Sampled 

As the suction dredge encountered the seagrass rhizome, sediment was drawn into the sampler 

from outside the diameter of the dredge pipe and thus sampled sediment from a greater area 

than was intended. This meant that it was not possible to directly compare the two samplers 

based on the number of infauna per square meter. Instead the abundances were measured as the 

number of infauna per unit volume of sediment sampled however it did not completely resolve 

the problem. While both methods could be compared based on the volume of sediment sampled 

a new problem of having the samplers collecting from different strata within the substratum 

arises. When the suction dredge encounters the rhizome mat, it begins to suck sediment in from 
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the sides, drawing in more sediment and infauna from the surface layer, while the hand corer 

collects a more even spread of sediment and fauna from each depth.  

 

While the volume of sediment sampled was generally small, the extrapolation of the infauna 

abundance to No. m-3 could also lead to unrealistic estimates. This is because infauna can be 

rather patchy and locally abundant in particular areas which may lead to over estimation of some 

of the abundances. Additional problems arise for both samplers from the use of volume to 

estimate the infauna abundances. As the infauna may not be uniformly distributed through the 

sediment column some infauna occupying a limited depth range would likely be underestimated 

due to the volume of sediment sampled. Caution should then be used when interpreting the 

finding of this study, knowing that any differences in infauna abundance between the two 

samplers may be a result of the uneven sediment sampling exhibited by the venturi suction 

dredge and over and under estimations from over extrapolating the data. 

 

3.2.3 Statistical Analysis 

Once the infauna had been identified and counted the abundance was calculated; results were 

calculated as the number of infauna m-3 to provide a standardised value which would allow for 

the two different methods to be compared. The total number of infauna families was counted 

and compared along with the abundance data for both of the sampling methods at each site. 

Shannon-²ƛŜƴŜǊ ŀƴŘ IŜƛǇΩǎ 9ǾŜƴƴŜǎǎ ƛƴŘƛŎŜǎ ǿŜǊŜ ŀƭǎƻ ŎŀƭŎǳƭŀǘŜŘ ŦƻǊ ŜŀŎƘ ƻŦ ǘƘŜ ǎŀƳǇƭƛƴƎ 

methods at both sites and compared using a two-way ANOVA. A comparison of total infauna 

abundance between the two methods at the different sites was done using a two-way ANOVA 

with infauna abundances log-ǘǊŀƴǎŦƻǊƳŜŘ ǘƻ ƳŜŜǘ ǘƘŜ ǘŜǎǘΩǎ ŀǎǎǳƳǇǘƛƻƴǎΦ {ƛƳƛƭŀǊƛǘȅ ƻŦ ƛƴŦŀǳƴŀ 

assemblages between the two sampling methods was also compared using SIMPER, ANOSIM and 
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MDS plot analyses using the PRIMER 6 statistical package (Clarke, 1993). This was achieved by 

doing a square root transformation on the infauna abundances and using the Bray-Curtis 

similarity index. 

 

3.3 Results 

3.3.1 Diversity and Evenness 

In all, 83 taxa were sampled using the hand corer while the suction dredge collected 93 taxa. A 

total of 32 different taxa were collected by both sampling methods at the Bare Sand site while at 

the Natural Meadow 1 site 51 taxa were collected by the hand corer and 60 were collected by the 

venturi suction dredge. Overall 14 of the taxa sampled were unique to the hand corer while 20 

were unique to the suction dredge; a more detailed list of the infauna families and their 

abundances is given in Appendix 2.  

 

 
At both the Bare Sand and Natural Meadow 1 sites the hand corer produced slightly higher values 

for the mean Shannon-Wiener Index with 2.075 ± 0.109 Bels at the Bare Sand Site and 3.113 ± 

0.158 Bels at the Natural Meadow 1 site. The venturi suction dredge on the other hand had 

slightly lower values of 1.991 ± 0.090 Bels and 3.060 ± 0.222 Bels respectively. 

 

Both site and sampling method were included in the two-way ANOVA model to look at their 

effect on the Shannon-Wiener Index. The model produced a reasonable fit to the data with an R2 

of 0.559, although only the site variable proved to have a significant effect on the Shannon-

Wiener Index (F=51.677, df=1, p<0.001). The sampling method variable did not significantly 

improve the predictability of the model (F=0.220, df=1, p=0.641). This indicates that there is no 
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significant difference in the value of the Shannon-Wiener Index obtained using either sampling 

method; therefore using either method would yield similar values. 

¢ƘŜ IŜƛǇΩǎ 9ǾŜƴƴŜǎǎ LƴŘŜȄ ǿŀǎ ƭƻƎ ǘǊŀƴǎŦƻǊƳŜŘ ǘƻ ƳŜŜǘ ǘƘŜ ŀǎǎǳƳǇǘƛƻƴǎ of the two-way ANOVA. 

As with the Shannon-Wiener Index the site and sampling method variables were both included 

into the two-way ANOVA model. The model provided a reasonable fit to the data with an R2 of 

0.554. Only the site variable was found to significantly improve the model (F=50.706, df=1, 

p<0.001); however as with the Shannon-Wiener Index the hand corer produced slightly higher 

values for the mean log IŜƛǇΩǎ 9ǾŜƴƴŜǎǎ LƴŘŜȄ ŀǘ ōƻǘƘ ǘƘŜ .ŀǊŜ {ŀƴŘ ŀƴŘ bŀǘǳǊŀƭ aŜŀŘƻǿ м ǎƛǘŜǎ 

(Figure 5) 

 

Figure 5: Mean log-ǘǊŀƴǎŦƻǊƳŜŘ IŜƛǇΩǎ 9ǾŜƴƴŜǎǎ LƴŘŜȄ ŦƻǊ ǘƘŜ .ŀǊŜ {ŀƴŘ ŀƴŘ bŀǘǳǊŀƭ aŜŀŘƻǿ м ǎƛǘŜǎ ǳǎƛƴƎ ōƻǘƘ ǘƘŜ 
hand corer and venturi suction dredge 

 

Retransforming the ƭƻƎ IŜƛǇΩǎ 9ǾŜƴƴŜǎǎ LƴŘŜȄ ŀƭƭƻǿŜŘ ŦƻǊ ŜŀǎƛŜǊ ƛƴǘŜǊǇǊŜǘŀǘƛƻƴ ƻŦ ǘƘŜ ǊŜǎǳƭǘǎ ŀƴŘ 

revealed low values of 0.078 ± 0.011 for the hand corer and 0.068 ± 0.007 for the suction dredge 
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at the Bare Sand site with values of 0.245 ± 0.030 for the hand corer and 0.255 ± 0.048 for the 

suction dredge at the Natural Meadow 1 site. These low values indicate that there is a lot of 

variation in numbers of individuals within different infauna communities. The results of the two-

way ANOVA showed that sampling method did not significantly improve the model which means 

ǘƘŀǘ ƛǘ ǿŀǎ ƴƻǘ ƘŀǾƛƴƎ ŀ ǎƛƎƴƛŦƛŎŀƴǘ ŜŦŦŜŎǘ ƻƴ ǘƘŜ IŜƛǇΩǎ 9ǾŜƴƴŜǎǎ LƴŘŜȄΦ ¢ƘŜǊŜŦƻǊŜ ƛǘ Ŏŀƴ ōŜ ǎŀƛŘ 

ǘƘŀǘ ōƻǘƘ ǎŀƳǇƭƛƴƎ ƳŜǘƘƻŘǎ ǿƻǳƭŘ ǇǊƻǾƛŘŜ ǎƛƳƛƭŀǊ ŜǎǘƛƳŀǘŜǎ ƻŦ ǘƘŜ IŜƛǇΩǎ 9ǾŜƴƴŜǎǎ LƴŘŜȄΦ 

 

3.3.2 Infauna Comparison 

The mean log infauna abundances sampled with the suction dredge were slightly higher than 

those taken using the hand corer at the bare sand site with 5.161 ± 0.085 and 5.099 ± 0.072 m-3 

respectively (Figure 6). The inverse was observed for samples collected at the Natural Meadow 1 

site with the hand corer having a mean log infauna abundance of 5.505 ± 0.064 compared with 

5.452 ± 0.150 m-3 for the suction dredge (Figure 6). This change in the mean log infauna 

abundances between the two sites when sampled with the different methods indicates a possible 

interaction between the sites sampled and the method used. 

 

The results showed that neither the sampling method (F=0.003, df=1, p=0.960) nor the 

interaction term (F=0.373, df=1, p=0.545) was having a significant impact on the log infauna 

abundance. However the model did reveal a significant difference in response to the different 

sites that were sampled (F=13.504, df=1, p=0.001), with the mean log infauna abundance being 

significantly higher in the Natural Meadow 1 site. 
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Figure 6: Mean log of infauna abundances for the Bare Sand and Natural Meadow 1 sites using both the hand corer 
and venturi suction dredge 

 

The comparison between the different sites across the two sampling methods returned a Global R 

statistic of 0.631 which indicates that the infauna assemblages collected between these two sites 

are sufficiently distinct from one another. The comparison of the hand corer and venturi suction 

dredge by means of the two-way ANOSIM gave a low Global R statistic of 0.172 meaning that 

there was little difference in the composition of the infauna between the two sampling method. 

This is further supported by the MDS plot in Figure 7 which shows clear separation of the samples 

taken from the two sites. It can also be seen that the samples have been partitioned based on the 

different sampling methods used, however they are not dissimilar enough to form distinct 

clusters and hence the low Global R statistic. 
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Figure 7: MDS plot of the square root transformed infauna abundance data 

 

To determine what infauna families contributed most to the dissimilarity between the different 

sites and sampling methods a SIMPER analysis was performed. The average dissimilarity between 

the two sampling methods was 53.79 % with Tellinidae, Nematoda, Spirorbidae, Rutidermatidae, 

Lumbrineridae, Veneridae, Syllidae, Bullidae, Oenonidae and Onuphidae accounting for 50 % of 

the dissimilarity. This indicates that there is a reasonable amount of overlap in the type of infauna 

collected by both samplers. The average dissimilarity between each of the samples from each 

method was 50.20 % for the hand corer and 48.35 % for the suction dredge, indicating that there 

is also a reasonable amount of variability in the infauna collected within the different sampling 

methods.  

 

Comparisons were also made between the Bare Sand and Natural Meadow 1 sites with an 

average dissimilarity of 64.25 %, with 50 % of the dissimilarity attributed to by the Spirorbidae, 
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Tellinidae, Nematoda, Aoridae, Syllidae, Onuphidae, Rutidermatidae, Veneridae, Lumbrineridae, 

Oenonidae and Turbinidae taxa. Comparisons of the individual samples from each site revealed 

an average dissimilarity of 53.17 % for the Bare Sand site and 44.76 % for Natural Meadow 1. This, 

along with the comparison between the different methods, shows that there is a fair amount of 

variability within the samples from each site and method and a distinct difference between 

samples from the different sites. 

 

3.4 Discussion 

The findings have shown that the venturi suction dredge sampled more taxa with 93 sampled 

compared to the 83 taxa sampled by the hand corer. This greater number of taxa collected with 

the suction dredge can be attributed to the fact that it is able to sample both the benthic infauna 

as well as the epifauna (Short and Coles, 2001). Sampling both the benthic and epifauna would 

then provide an additional array of taxa to be sampled in comparison to the hand corer which 

predominantly samples just the benthic infauna. Despite the difference in the number of taxa 

sampled, both methods provided similar values for the mean Shannon-²ƛŜƴŜǊ ŀƴŘ IŜƛǇΩǎ 

Evenness indices. These values were marginally higher in the hand corer than in the suction 

dredge; however they were not statistically significant.  

 

The results also showed no statistically significant difference in the total number of infauna 

sampled by each method at either the Bare Sand or Natural Meadow 1 sites. This is in direct 

contrast to the findings by Stoner et al. (1983) who found that the suction sampler under-

sampled by as much as 72.8 % in bare sand habitats and 32.6 % within natural seagrass in relation 

to the hand corer. These differences in the findings may be attributed to the fact that Stoner et al. 

(1983) only took two samples with the suction dredge and 28 hand cores whereas in this study 
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equal numbers of samples were taken using samplers with the same diameter. Such differences 

could also be a result of the different seagrass species which were examined, with Stoner et al. 

(1983) sampling in Halodule wrightii while this study sampled within Posidonia australis. 

 

Comparisons of infauna abundances through the two-way ANOSIM and MDS plots indicated that 

there was a lot of overlap in the infauna assemblages between the two sampling methods 

meaning that neither method collected distinctly different infauna assemblages. The results also 

showed that there was variability between samples taken by the same sampler, which is 

indicative of the patchy nature and localised abundance of infauna (Ramey et al., 2009).  

 

The results have indicated that both sampling methods collect similar abundances of infauna and 

sample similar infauna assemblages, therefore either method would be suitable for this project. 

The only advantage that the venturi suction dredge appears to have over the hand corer is its 

ability to sample a greater number of taxa, which would be useful in determining if all the infauna 

associated with a natural meadow has returned to the transplanted seagrass plots. However, 

while both infauna and epifauna are collected by the suction dredge there is as yet no way of 

being able to separate these different fauna out from the samples (Short and Coles, 2001). 

 

In addition to sampling effectiveness of the samplers, the practicality of the associated sampling 

methods also need to be taken into consideration. In this case the simplicity of the hand corer 

proves to be more practical and easy to use being small in size relative to the venturi suction 

dredge, requiring only one operator to use and not having any mechanical or technical 

components which may break or become faulty. Given that both sampling methods yield similar 

results in Shannon-²ƛŜƴŜǊ ŀƴŘ IŜƛǇΩǎ 9ǾŜƴƴŜǎǎ ƛƴŘƛŎŜǎΣ ǘƻǘŀƭ ƛƴŦŀǳƴŀ ŀōǳƴŘŀƴŎŜǎ ŀƴŘ ǎŀƳǇƭŜ ǘƘŜ 
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same infauna assemblages; picking the best ƳŜǘƘƻŘ ǿƻǳƭŘ ǘƘŜƴ ŘŜǇŜƴŘ ƻƴ ǘƘŜ ǎŀƳǇƭŜǊǎΩ 

practicality. Therefore it can be concluded that the hand corer would be the most appropriate 

method to conduct the sampling with due to its simplicity, light weight and ease of use.  
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4. Comparison of Transplanted and Natural Meadows  
4.1 Seagrass Shoot Density 

Similar total shoot densities were measured at Natural Meadow 1, Natural Meadow 2 and the 

two higher density 0.25 m and 0.125 m plots, with all sites having a mean shoot density greater 

than 500 shoots m-2 (Figure 8). The 0.25 m Plot also had a shoot density which was greater than 

either of the two natural meadow sites with a mean of 616.500 ± 13.219 shoots m-2. Both of the 

lower density 1 m and 0.5 m Plots had substantially fewer shoots with less than 500 shoots m-2 in 

both plots (Figure 8). A one-way ANOVA revealed that the mean shoot density differed 

significantly among the different sites (F=30.746, df=5, p<0.001). A post hoc Tukey test showed 

that the mean shoot density in the 0.25 m and 0.125 m Plots was significantly higher than in the 1 

m and 0.5 m Plots; and significantly higher in the 0.25 m Plot than at all other sites. 

 

These findings indicate that the mean shoot densities in the 0.125 m and Natural Meadows 1 and 

2 are not significantly different from each other meaning that the 0.125 m Plot has reached shoot 

densities that match those of the natural meadows. The 0.25 m Plot had a mean shoot density 

significantly larger than the all other sites, indicating that it has surpassed the mean density of the 

natural meadows as well. 

 

Edge effects were also examined in relation to shoot density to see if the sites were denser in the 

centre. Figure 9 shows the mean shoot density in the outer, middle and centre zones changing at 

each site; such changes indicate that there is a potential interaction occurring between the edge 

zone and the sites in relation to the shoot density. To determine if the shoot density was affected 
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Figure 8: Mean shoot density of the natural and transplanted seagrass on Southern Flats, Cockburn Sound 

 

 

Figure 9: Shoot density in each zone for the natural and transplanted seagrass on Southern Flats, Cockburn Sound. 
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by edge effects at different sites a two-way ANOVA was performed using a model which included 

the site, edge zone and the interaction between the site and edge. The model produced a good fit 

to the data with an R2 of 0.655 which means that 65.5 % of the data points were explained by the 

model. Both the site (F=25.957, df=5, p<0.001) and the interaction between site and edge 

(F=4.169, df=10, p<0.001) were significant, meaning that the shoot density in each of the three 

edge zones changed in relation to the different sites.  

 

4.2 Infauna 

4.2.1 Processing and Sorting Effectiveness  

Determining the efficiency to which the infauna were removed from the sorting tray after the 

washing and rinsing process is of importance as it provides an indication of how effective the 

sorting was but also whether particular infauna were being under estimated. Of the 44 samples 

processed 59.70 ± 2.67 % of the infauna were removed by the end of the washing process with 

40.29 ± 2.67 % left remaining in the sorting tray. The majority of the infauna remaining in the tray 

consisted primarily of taxa possessing heavy shells, exoskeletons or calcified tubes such as the 

bivalves, gastropods and polychaetes (Table 1). The five infauna families with the largest 

proportions left behind in the sorting trays were the Tellinidae, Veneridae (Venus Clams), Bullidae 

(Bubble Shells), Spirobidae and Batillariidae (Creepers) with 69.40, 64.70, 38.81, 31.34 and 22.73 

% respectively (Table 1). 

 

Examination of how effective the sorting was at removing all the infauna from the 15 samples 

processed revealed that 80.38 ± 3.17 % of all infauna was removed at the end of the first sorting. 

It was also noted that those which were removed during the second sorting were generally of 

considerably smaller size and difficult to see. A total of 16 different taxa were missed during the 

first sorting, with the five taxa with the largest percentages missed belonging to the Nematoda, 

Epitoniidae, Rutidermatidae, Batillariidae and Tellinidae with 41.216, 27.333, 18.889, 16.667 and 
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15.347 % respectively (Table 2). The taxa present within Table 2 provide an indication as to how 

much the abundance estimates for each family are being underestimated and thereby allow for a 

more accurate representation of the infauna abundances within this study. 

 

4.2.2 Infauna Diversity and Evenness 

The greatest number of taxa was found at the Natural Meadow 1 site with 50 taxa, 10 of which 

were unique to that site. This was followed by the 0.125 m Plot with 46 taxa, nine of which were 

unique; and then the Natural Meadow 2 site with 44 taxa and five unique taxa. The 1 m Plot had 

35 taxa three of which were unique to that site; 32 taxa were found at the Bare Sand site with 

three unique taxa; 31 taxa were found at the 0.25 m Plot with only one unique taxon; and the 0.5 

m Plot had the least with 27 taxa with only two being unique to that site. This shows that there is 

a great deal of variability in the number of taxa present at each site with no progressive increase 

from the Bare Sand site up through the increasing planting density transplants to the higher 

density natural meadows. However it should be noted that the 0.125 m Plot did have similar 

numbers of taxa which were present and unique compared to those of the two natural meadows. 

 

While no distinct trend was observed in regard to the total numbers of taxa found at each site the 

Shannon-Wiener Index tells a different story. The diversity index increased in the higher seagrass 

planting densities. The greatest diversity was at Natural Meadow 1 with a Shannon-Wiener Index 

of 3.112 ± 0.522 Bels; the lowest was at the Bare Sand site with 2.075 ± 0.378 Bels (Figure 10). 

IŜƛǇΩǎ 9ǾŜƴƴŜǎǎ ŦƻƭƭƻǿŜŘ ǘƘŜ ǎŀƳŜ ǘǊŜƴŘ ǿƛǘƘ ǘƘŜ ƭƻǿŜǎǘ ǾŀƭǳŜ ƻŦ лΦлту ҕ лΦлоу being recorded 

at the Bare Sand site and the highest value of 0.245 ± 0.101 at Natural Meadow 1 (Figure 11). 

 

A significant difference was detected in the mean Shannon-Wiener Index (F=3.930, df=6, p=0.002) 

indicating that the mean Shannon-Wiener Index at each site is not the same. The post hoc Tukey 
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Table 1: The number of infauna from each family remaining in the tray after the rinsing and washing process (n=44) 

Taxa Min. Max. Mean SE % In Tray 

Amphipoda           

Aoridae 0 1 0.068 0.038 3.220 

Caprellidae 0 1 0.023 0.023 2.273 

Cyproideidae 0 1 0.023 0.023 0.758 

Ischyroceridae 0 1 0.023 0.023 1.136 

Phoxochephalidae 0 1 0.068 0.038 5.682 

Cirripeda           

Balanidae 0 1 0.045 0.032 4.545 

Bivalves           

Pectinidae 0 1 0.023 0.023 2.273 

Solemyidae 0 2 0.114 0.058 8.333 

Solecurtidae 0 1 0.023 0.023 2.273 

Tellinidae 0 59 14.591 2.001 69.395 

Veneridae 0 10 1.886 0.316 64.697 

Decapoda           

Diogenidae 0 1 0.045 0.032 4.545 

Gastropoda           

Batillariidae 0 20 0.886 0.477 22.727 

Buccinidae 0 1 0.068 0.038 6.818 

Bullidae 0 7 0.955 0.258 38.813 

Columbellidae 0 4 0.182 0.099 10.227 

Epitoniidae 0 1 0.227 0.064 20.455 

Fissurellidae 0 1 0.023 0.023 2.273 

Hydatinidae 0 1 0.023 0.023 2.273 

Mitridae 0 1 0.045 0.032 4.545 

Naticidae 0 4 0.227 0.102 14.773 

Olividae 0 1 0.023 0.023 2.273 

Terebridae 0 3 0.136 0.083 6.818 

Trochidae 0 4 0.364 0.130 18.864 

Turbinidae 0 19 0.932 0.457 21.071 

Nematoda 0 8 0.727 0.235 5.324 

Ostracoda           

Order: Podocopida 0 2 0.136 0.062 6.629 

Rutidermatidae 0 1 0.023 0.023 0.175 

Polychaetes           

Lumbrineridae 0 2 0.114 0.058 5.871 

Maldanidae 0 1 0.023 0.023 0.758 

Oenonidae 0 2 0.091 0.055 3.030 

Onuphidae 0 2 0.091 0.064 3.409 

Paraonidae 0 1 0.045 0.032 4.545 

Spirorbidae 0 133 9.545 4.235 31.344 

Syllidae 0 1 0.023 0.023 2.273 

Polyplacophora           

Ischnochitonidae 0 1 0.045 0.032 3.409 

Tanaidacae           

Tanaidae 0 1 0.023 0.023 1.136 
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Table 2: The number of infauna missed during the first sorting. 

Taxa Min. Max. Mean SE % Missed 

Amphipoda           

Aoridae 0 1 0.067 0.067 6.667 

Ischyroceridae 0 1 0.067 0.067 6.667 

Bivalves           

Solemyidae 0 1 0.067 0.067 0.952 

Tellinidae 0 10 2.267 0.665 15.347 

Veneridae 0 3 0.600 0.254 14.365 

Copepoda           

Order: Harpacticoid 0 1 0.067 0.067 6.667 

Gastropoda           

Batillariidae 0 1 0.200 0.107 16.667 

Epitoniidae 0 3 0.467 0.215 27.333 

Naticidae 0 1 0.067 0.067 6.667 

Turbinidae 0 1 0.200 0.107 12.222 

Nematoda 0 10 3.467 0.703 41.216 

Ostracoda           

Order: Podocopida 0 1 0.067 0.067 3.333 

Rutidermatidae 0 2 0.400 0.190 18.889 

Polychaetes           

Lumbrineridae 0 3 0.200 0.200 5.000 

Spirorbidae 0 1 0.133 0.091 8.889 

Syllidae 0 2 0.267 0.153 11.333 

 

test revealed significant differences in the mean Shannon-Wiener Index between the Bare Sand 

site and Natural Meadow 1 (p<0.001), and between Natural Meadow 1 and both the 1 m and 0.5 

m Plots (p=0.015  and p=0.016  respectively). The same analysis was performeŘ ŦƻǊ ǘƘŜ IŜƛǇΩǎ 

9ǾŜƴƴŜǎǎ LƴŘŜȄ ǿƛǘƘ ǘƘŜ ƳŜŀƴ IŜƛǇΩǎ 9ǾŜƴƴŜǎǎ LƴŘŜȄ ŦƻǳƴŘ ǘƻ ōŜ ǎƛƎƴƛŦƛŎŀƴǘƭȅ ŘƛŦŦŜǊŜƴǘ όCҐрΦлпнΣ 

df=6, p<0.001). Significant differences between Natural meadow 1 and the Bare Sand site, 1 m 

Plot, 0.5 m Plot and the 0.25 m Plot were also observed, with p-values of <0.001, 0.002, 0.003 and 

0.016 respectively.  

 

4.2.3 Infauna Abundances 

Infauna abundance appeared to increase with the increasing seagrass planting densities with a 

mean abundance of 10,592.792 ± 1,777.339 infauna m-2 at the 1 m Plot, increasing to 25,407.395 

± 10,829.971 infauna m-2 at the 0.125 m Plot (Figure 12). Despite the increasing abundances the 1 

m, 0.5 m and 0.25 m Plots all had means which were lower than that of the Bare Sand site which 
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Figure 10: Mean Shannon-Wiener Diversity Index for each of the control and experimental plots on Southern Flats 

 

 

CƛƎǳǊŜ ммΥ aŜŀƴ IŜƛǇΩǎ 9ǾŜƴƴŜǎǎ LƴŘŜȄ ŦƻǊ ŜŀŎƘ ƻŦ ǘƘŜ ŎƻƴǘǊƻƭ ŀƴŘ ŜȄǇŜǊƛƳŜƴǘŀƭ Ǉƭƻǘǎ ƻƴ {ƻǳǘƘŜǊƴ Cƭŀǘǎ 
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had a mean of 18,169.093 ± 2,590.927 infauna m-2 (Figure 12). Natural meadow 1 had the 

greatest abundance of infauna with a mean of 29,807.772 ± 6267.453 infauna m-2 followed by the 

0.125 m Plot and Natural Meadow 2 with mean abundances of 25,407.395 ± 10,829.971 and 

21,772.301 ± 3,714.777 infauna m-2 respectively (Figure 12). It should be noted that these 

estimates are likely to be underestimates as they only represent 80.38 % of the infauna that were 

removed by the sorting process, as indicated previously. 

 

The two-way ANOVA used both site and edge zone variables in the model, which explained 25.9 

% of the data points (R2=0.259). The site variable was a significant predictor of the mean log 

infauna abundance (F=3.754, df=6, p=0.003) while the edge zone was not (F=1.329, df=2, 

p=0.271). A post hoc Tukey test for the site variable indicated that the only significant difference 

in the mean log infauna abundance was between Natural Meadow 1 and the 1 m Plot (p=0.002). 

 

Comparisons of infauna assemblages using the MDS plot in Figure 13 showed little separation of 

the data points into distinct groups with many of the points from different sites overlapping with 

those from other sites. Despite the large amount of overlap there does appear to be some slight 

separation of the data points based on the sites, though no separation or grouping is seen for the 

different edge zones (Figure 13). The high stress level of the MDS plot (2D stress: 0.26) indicates 

that the clustering of the data points are not providing a very reliable representation of the 

similarity between the samples and sites. 

 

To gain a better representation of the similarity of the infaunal assemblages between the 

different control and experimental seagrass transplants site as well as the different edge zones, 

an ANOSIM analysis was performed. A Global R statistic of 0.279 was obtained for the between 

site differences indicating that overall there was little separation of the infauna assemblages 

between the different sites. The between edge zones also gave a low Global R statistic of 0.145 
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meaning that overall there was no difference in the infauna assemblages in the different edge 

zones. Despite the overall lack of separation between the different sites in terms of the infauna, 

individual comparisons (shown in Table 3) revealed separation between some sites. 

 

 

Figure 12: Infauna abundances for the control and experimental sites on Southern Flats. 

 

Comparisons between Natural Meadow 1 and Bare Sand, Natural Meadow 2 and Bare Sand, 

Natural Meadow 1 and the 1m Plot, Natural Meadow 1 and the 0.5 m Plot and between Natural 

Meadow 1 and Natural Meadow 2 all revealed overlapping but distinctly separate infauna 

assemblages (Table 3). Both the 0.25 and 0.125 m Plots gave low R statistics when compared with 

Natural Meadow 1 and 2 indicating that there was little to no difference in the infauna 

assemblages between the high density seagrass transplants and the natural seagrass meadows 

(Table 3). 
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Figure 13: MDS plot of the square root transformed infauna abundance data showing similarities of the infauna 
assemblages between each site and edge zone at Southern Flats, Cockburn Sound. 

 

The SIMPER analysis indicated that in most cases the five most highly abundant taxa Nematoda, 

Tellinidae, Lumbrineridae, Onuphidae and Veneridae generally contributed the greatest amount 

to the dissimilarity between the different sites. A one-way ANOVA was performed on these taxa 

and found that the abundances of Nematoda (F=1.033, df=6, p=0.411), Tellinidae (F=1.407, df=6, 

p=0.224) and Lumbineridae (F=0.899, df=6, p=0.500) were not significantly different between the 

sites while Onuphidae (F=10.323, df=6, p<0.001) and Veneridae (F=5.737, df=6, p<0.001) were. 

Significant differences in infauna abundances between different sites were also seen in 16 other 

taxa, as shown in Appendix 3.  

 

Several infauna taxa were recorded in both of the natural seagrass meadows as well as in some of 

the high planting density seagrass transplants. Eusiridae, Solecurtidae, Diogenidae, 

Columbellidae, Fissurellidae, Oweniidae and Ischnochitonidae were found at both Natural 

Meadow 1 and 2 with Eusiridae also occurring in the 0.125 m Plot and Diogenidae and 

Columbellidae both occurring at the 0.25 and 0.125 m Plots.  
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Table 3: R statistic outputs from the ANOSIM analysis for the infauna comparisons between the sites and edge zones. 
The R statistic ranges from 1 to -1 with values >0.75 indicating that the infauna assemblages are separate 
from each other, values >0.5 indicating some overlap but still forming distinct groups and a values <0.25 
indicating that there is no difference in the infauna assemblages. Significance level is set at 5 ҈ όʰҐлΦлрύ 

Group V's Group R Statistic Sig. (%) 

Site     

Bare Sand Natural Meadow 1 0.645 0.1 

Bare Sand 0.25 m Plot 0.27 0.7 

Bare Sand 0.125 m Plot 0.24 0.4 

Bare Sand 1 m Plot 0.257 1.6 

Bare Sand 0.5 m Plot 0.333 1.1 

Bare Sand Natural Meadow 2 0.519 0.1 

Natural Meadow 1 0.25 m Plot 0.241 2.9 

Natural Meadow 1 0.125 m Plot 0.256 0.8 

Natural Meadow 1 1 m Plot 0.507 0.1 

Natural Meadow 1 0.5 m Plot 0.624 0.1 

Natural Meadow 1 Natural Meadow 2 0.533 0.1 

0.25 m Plot 0.125 m Plot -0.117 84.3 

0.25 m Plot 1 m Plot 0.039 35.2 

0.25 m Plot 0.5 m Plot 0.128 12.4 

0.25 m Plot Natural Meadow 2 0.272 1.7 

0.125 m Plot 1 m Plot 0.185 4 

0.125 m Plot 0.5 m Plot 0.287 0.2 

0.125 m Plot Natural Meadow 2 0.301 2.3 

1 m Plot 0.5 m Plot 0.059 30.6 

1 m Plot Natural Meadow 2 0.148 9 

0.5 m Plot Natural Meadow 2 0.366 0.2 

Edge Zone     

Outer Middle 0.022 37.6 

Outer Centre 0.256 0.2 

Middle Centre 0.156 1.9 
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5. Discussion 
5.1 Shoot Density 

Four years after their initial transplantation onto Southern Flats the two high planting density P. 

australis transplants, 0.25m and 0.125 m Plots, had reached structurally equivalent levels 

compared to nearby natural meadows. It was observed that the shoot density in the 0.25 m Plot 

was significantly greater than any of the other sites with 616.500 ± 13.219 shoots m-2 with 

differences also observed in the different edge zones at different sites.  

 

Bivalves have been shown to increase the nitrogen and phosphorus content of the sediment, 

creating a mosaic of nutrient rich patches (Peterson and Heck Jr., 1999; 2001ab). Bivalve density 

manipulation experiments by Peterson and Heck Jr. (2001ab) have shown that the presence of 

bivalves within seagrass meadows enhance the growth and productivity of the seagrass which in 

turn increases survivorship of the bivalves. It is therefore possible, that the presence of bivalves 

within the transplanted P. australis were responsible for the different shoot densities observed at 

different sites and edge zones. Examination of the total number of bivalves and of individual 

bivalve families however found no connection between the bivalves and the shoot densities 

observed. 

 

Another explanation for the higher shoot density observed in the 0.25 m Plot could be because 

that planting the shoots out at 0.25 m intervals may be the optimal planting density for P. 

australis, with more sprigs being planted per meter while still having enough space for them to 

expand. Planting at 0.125 m intervals may have resulted in overcrowding and hindered growth of 

the transplants, hence the lower shoot density in the 0.125 m Plot. The initial planting of the high 

density transplant plots in 2007 was undertaken by more experienced divers while the lower 

density plots were planted by less experienced divers which may have accounted for some of the 

differences in the shoot density (Van Keulen, Murdoch University, pers. com.). 
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Rehabilitation efforts conducted at Oyster and Princess Royal Harbour using P. australis and  

P. sinuosa showed transplants recovering to levels comparable to natural meadows five years 

post transplantation (Cambridge et al., 2002; Bastyan and Cambridge, 2008). Compared with this 

study, the P. australis transplants in Cockburn Sound showed structural equivalence to natural 

meadows in the 0.25 and 0.125 m Plots after four years; this is due to the different planting 

densities used in the Oyster and Princess Royal Harbour studies which were planted out at 1 m 

intervals. Based on the findings from Cambridge et al. (2002) and Bastyan and Cambridge (2008) 

it can be anticipated that the 1 m and 0.5 m Plots in Cockburn Sound will be structurally 

equivalent to natural meadows in another one to two years. 

 

5.2 Infauna 

5.2.1 Processing and Sorting Effectiveness 

Overall the effectiveness of the infauna sorting was good, with up to 80.38 % of the infauna being 

removed from the sediment. The underestimation of the Nematoda and families of polychaetes 

was largely the result of large quantities of seagrass material being present within the samples, 

with many of the nematodes and polychaetes getting in among the seagrass fibres making them 

difficult to find during the first sorting. 

 

5.2.2 Infauna Abundances 

Natural Meadow 1 and Natural Meadow 2 differed from each other in regards to their infauna 

abundances as well as their assemblages, as indicated by the ANOVA and ANOSIM. Such 

differences between the two can be explained by their exposure to different hydrodynamic 

conditions. As Natural Meadow 2 is located within the transplantation meadow the water velocity 

and turbulence would be much lower (Backhaus and Verduin, 2008; Morris et al., 2008; Lefebvre 

et al., 2010). As the water velocity decreases with distance into the meadow any infauna recruits 

being transported by the water would settle out before reaching Natural Meadow 2 (Macreadie 
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et al., 2010; Murphy et al., 2010; Smith et al., 2011). Natural Meadow 1, on the other hand, was 

outside the transplantation meadow, so any transported infauna recruits would settle out onto 

the meadow, giving it greater infauna abundance. 

 

Both the 0.25 m Plot and 0.125 m Plots had infauna abundances and assemblages comparable to 

Natural Meadow 1 and Natural Meadow 2 within four years after their initial transplantation. This 

recovery falls in line with other estimations of benthic infauna recovery recorded for  

Halodule wrightii which had recovery times of three to five years (Sheridan, 1998; Sheridan et al., 

2003; Sheridan, 2004). Recovery times did vary considerably with other studies and seagrasses, 

with 1.5 years in Cymodocea nodosa (Paranovi et al., 2000), two years in Zostera marina (Evans 

and Short, 2005) and 1.8 years in a study by Fonseca et al. (1996) with H. wrightii. Such variation 

in the recovery times of the infauna can be attributed in part to the different growth rates 

exhibƛǘŜŘ ōȅ ǘƘŜ ŘƛŦŦŜǊŜƴǘ ǎŜŀƎǊŀǎǎΩ, with Z. marina and C. nodosa having fast growth rates 

(Olesen and Sand-Jensen, 1994; Vidondo et al., 1997) and hence the faster time for the infauna to 

reach comparable levels to natural meadows. 

 

The results also showed no significant differences in the outer, middle or centre edge zones on 

the infauna abundances or assemblages which is in contrast to findings from other studies 

(Tanner, 2005; Warry et al., 2009; Macreadie et al., 2010; Murphy et al., 2010; Smith et al., 2011). 

The main reason for this is that these other studies examined individual infauna families across 

seagrass patches surrounded by sand, while this study had different density plots located within a 

transplantation meadow and looked at the overall infauna abundances and assemblages. The 

work by Tanner (2005) showed that only certain infauna respond to edge effects, with most 

bivalves and polychaetes not being impacted. Murphy et al. (2010) also stated that edge effects 

could not be generalised across seagrass habitats with the effects differing from taxon to taxon.  
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Eusiridae, Solecurtidae, Diogenidae, Columbellidae, Fissurellidae, Oweniidae and 

Ischnochitonidae were all found to occur within the two natural meadows with Eusiridae, 

Diogenidae and Columbellidae in the higher planting density transplants. As these infauna were 

only found in natural meadows and transplanted sites which had attained comparable levels of 

shoot density and infauna assemblages, it can be suggested that these families may represent 

climax or K-species, indicating the transition to a state comparable to natural seagrass meadows. 

However as this study was only a snapshot of the recovery of transplanted seagrass, long term 

monitoring would be required to see if they persist within the 0.25 and 0.125 m plots as well as 

the natural meadows. Monitoring for their presence would also be required within the 1 and 0.5 

m Plots to determine if they occur once the shoot density has reached comparable levels to the 

natural meadows. 

 

The presence of other infauna within the transplanted seagrass also gives an indication of how 

well the ecosystem is developing. In particular were the presences of harpacticoid copepods, 

including individuals from the family Peltitiidae. Research has shown that the harpacticoid 

copepods form a large proportion of the diet for King George Whiting (Sillaginodes punctatus), a 

valuable commercial and recreational fish species (Jenkins et al., 2011). The presence of the 

Harpacticoida copepods indicates that the transplanted seagrass is capable of providing a vital 

food source as well as foraging areas for the valuable King George Whiting. 

 

The Western Australian Seahorse (Hippocampus subelongata) and Wide-bodied Pipefish 

(Stigmatopora nigra) were both observed within the natural seagrass sites and experimental 

transplant plots as well as in the surrounding transplant meadow. With both of these species 

feeding on copepods and H. subelongatus on nematodes and polychaetes (Kendrick and Hyndes, 

2005), the copepods, nematodes and polychaetes may have sufficiently recovered to be able to 

support small numbers of these higher order predators.  
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A dietary study by Smith et al. (2011) on Stigmatopora nigra revealed that on average 89.4 % of 

the fish ingested between 12 to 17 Harpacticoid copepods. Examination of the number of 

harpacticoid copepods found in each site from this study revealed that with the exception of the 

0.5 m Plot, which had none, the number of Harpacticoid copepods ranged from 35.075 to 

153.057 copepods m-2. This then indicates that the seagrass is able to provide sufficient 

harpacticoid copepod prey to supply a food source for these higher order predators. 

 

In addition a Sea lion (Neophoca cinerea) was observed feeding on an adult Blue-Manna Crab 

(Portunus pelagicus) in nearby transplanted seagrass during the study; this indicates that the 

transplanted seagrass is currently providing food and foraging grounds for an array of higher 

order predators. However it could also be said that the transplanted seagrass meadow (planted 

out at 0.5 m intervals) is not providing sufficient protection to the associated marine 

invertebrates from predators, with research having shown that survival of invertebrates increases 

with increasing shoot density (Hovel and Lipcius, 2001; Peterson and Heck Jr., 2001ab; Hovel, 

2003). 
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6. Conclusion 
It is evident that after four years post transplantation, the Posidonia australis seagrass in the 0.25 

and 0.125 m Plots have attained structurally equivalent levels of shoot densities, as well as having 

infauna abundances and assemblages, equivalent to those of Natural Meadows 1 and 2. While 

not currently at levels comparable to Natural Meadow 1 and 2, the 1 m and 0.5 m Plots are likely 

to reach equivalent levels within the next one to two years. To ensure that the 1 and 0.5 m Plots 

attain equivalent levels of shoot density and infauna abundances and assemblages, long term 

monitoring of these sites throughout the year would be advisable.  

 

Monitoring would also give insight to the seasonal variability in the infauna communities and 

provide an indication of the importance of the Eusiridae, Solecurtidae, Diogenidae, 

Columbellidae, Fissurellidae, Oweniidae and Ischnochitonidae as possible indicators of succession 

to a state comparable to the natural P. australis meadows. Future monitoring would also benefit 

from looking at the succession in the larger macrobenthic invertebrates including iconic seagrass 

species such as Razor Clams (Pinna bicolour), Blue-Manna Crabs (Portunus pelagicus) and 

cephalopods. 
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Appendix  1 
References used for infauna identification 

Books 

Edgar, G.J, 2008; Australian Marine Life: The plants and animals of temperate waters, 2nd Ed., 

Sydney, New Holland Publishers 

Jones, D and Morgan, G, 2002, A Field Guide to Crustaceans of Australian Waters, 2nd Ed., New 

Holland Publishers 

Wells, F.E and Bryce, C.W, 1993; Seaslugs of Western Australia, Western Australian Museum 

Wilson, B.R, 2002; A Handbook to Australian Seashells: On Seashores East to West and North to 

South, New Holland Publishers 

 

Journals 

Clark, W.C, 1963; Australian Pycnogonida, Records of the Australian Museum, vol.26, pp.1ς82. 

King, P.E, 1986; Sea Spiders: A revised key to the adults in littoral Pycnogonida in the British Isles, 

Field Studies, vol.6, pp.493-516 

 

Software 

IntKey for Windows, Version 5.11 

Dallwitz, M.J, 1980; A general system for coding taxonomic descriptions, Taxon, vol.29, pp.41ς46 

Dallwitz, M.J; Paine, T.A and Zurcher, E.J, 1993; UserΩǎ ƎǳƛŘŜ ǘƻ ǘƘŜ 59[¢! {ȅǎǘŜƳΥ ŀ general 

system for processing taxonomic descriptions, 4th Ed., http://delta -intkey.com 

Dallwitz, M.J; Paine, T.A and Zurcher, E.J, 1995; ¦ǎŜǊΩǎ guide to Intkey: a program for interactive 

identification and information retrieval, http://delta -intkey.com 

Dallwitz, M.J; Paine, T.A and Zurcher, E.J, 2000; Principles of interactive keys. http://delta -

intkey.com 

 

Web Sites 

http://home.comcast.net/~fireflea2/OstracodeKeyindex.html 

http://www.marinespecies.org/cumacea/KeyStart.php 

http://delta-intkey.com/
http://delta-intkey.com/
http://home.comcast.net/~fireflea2/OstracodeKeyindex.html
http://www.marinespecies.org/cumacea/KeyStart.php
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Appendix  2 
Mean abundances of taxa from different sites and sampling methods in Southern Flats, 

Cockburn Sound 

Taxa 

Corer   Dredge 

Bare Sand   Natural Meadow 1   Bare Sand   Natural Meadow 1 

Amphipoda 
N Mean SE   N Mean SE   N Mean SE   N Mean SE 

Ampithoidae 
12 0 0 

 
11 857 575 

 
11 0 0 

 
10 373 373 

Aoridae 
12 497 335 

 
11 10690 1639 

 
11 0 0 

 
10 11884 2934 

Caprellidae 
12 741 529 

 
11 2875 1244 

 
11 0 0 

 
10 11282 3320 

Ceradocopsis Group 
12 0 0 

 
11 0 0 

 
11 0 0 

 
10 3338 1510 

Cyproideidae 
12 0 0 

 
11 3008 2140 

 
11 239 239 

 
10 7786 3419 

Dexaminidae 
12 271 271 

 
11 1826 977 

 
11 0 0 

 
10 1095 1095 

Eusiridae 
12 0 0 

 
11 1285 668 

 
11 0 0 

 
10 1070 546 

Isaeidae 
12 0 0 

 
11 0 0 

 
11 0 0 

 
10 917 917 

Ischyroceridae 
12 303 303 

 
11 6290 2879 

 
11 201 201 

 
10 1255 1255 

Leucothoidae 
12 287 287 

 
11 0 0 

 
11 0 0 

 
10 365 365 

Lysianassidae 
12 303 303 

 
11 0 0 

 
11 0 0 

 
10 0 0 

Phoxochephalidae 
12 265 265 

 
11 2150 927 

 
11 834 456 

 
10 2311 890 

Platyscelidae 
12 0 0 

 
11 411 411 

 
11 0 0 

 
10 365 365 

Sebidae 
12 0 0 

 
11 0 0 

 
11 0 0 

 
10 365 365 

Stenothoidae 
12 0 0 

 
11 568 568 

 
11 293 293 

 
10 459 459 

Thoriella Group 
12 0 0 

 
11 568 568 

 
11 0 0 

 
10 0 0 

Unidentified 
12 0 0 

 
11 0 0 

 
11 0 0 

 
10 1210 1210 

Cirripedia 
                              

Balanidae 
12 0 0 

 
11 352 352 

 
11 0 0 

 
10 365 365 

Bivalves 
                              

Pectinidae 
12 0 0 

 
11 478 478 

 
11 0 0 

 
10 0 0 

Solemyidae 
12 1101 472 

 
11 831 565 

 
11 1688 657 

 
10 2924 1317 

Solecurtidae 
12 0 0 

 
11 1153 801 

 
11 0 0 

 
10 0 0 

Tellinidae 
12 38419 7194 

 
11 61845 8986 

 
11 68160 15914 

 
10 117404 26824 

Veneridae 
12 3626 977 

 
11 11556 2544 

 
11 8812 1857 

 
10 6088 2221 

Copepoda 
                              

Epacteriscidae 
12 0 0 

 
11 0 0 

 
11 0 0 

 
10 313 313 

Peltitiidae 
12 0 0 

 
11 411 411 

 
11 0 0 

 
10 9910 3088 

Order: Harpacticoid 
12 298 298 

 
11 1005 681 

 
11 0 0 

 
10 6034 2258 

Cumacean 
                              

Diastylidae 
12 0 0 

 
11 0 0 

 
11 0 0 

 
10 1094 557 

Gynodiastylidae 
12 0 0 

 
11 916 615 

 
11 0 0 

 
10 1457 971 

Nannastacidae 
12 0 0 

 
11 3005 1573 

 
11 587 587 

 
10 5873 2261 

Decapoda 
                              

Diogenidae 
12 0 0 

 
11 903 607 

 
11 0 0 

 
10 187 187 




