Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Root-nodule bacteria from indigenous legumes in the north-west of Western Australia and their interaction with exotic legumes

Yates, R.J., Howieson, J.G., Nandasena, K.G. and O'Hara, G.W. (2004) Root-nodule bacteria from indigenous legumes in the north-west of Western Australia and their interaction with exotic legumes. Soil Biology and Biochemistry, 36 (8). pp. 1319-1329.

Link to Published Version:
*Subscription may be required


Bacteria were isolated from root-nodules collected from indigenous legumes at 38 separate locations in the Gascoyne and Pilbara regions of Western Australia. Authentication of cultures resulted in 31 being ascribed status as root-nodule bacteria based upon their nodulation of at least one of eight indigenous legume species. The authenticated isolates originated from eight legume genera from 19 sites. Isolates were characterised on the basis of their growth and physiology; 20 isolates were fast-growing and 11 were slow-growing (visible growth within 3 and 7d, respectively). Fast-growers were isolated from Acacia, Isotropis, Lotus and Swainsona, whilst slow-growers were from Muelleranthus, Rhynchosia and Tephrosia. Indigofera produced one fast-growing isolate and seven slow-growing isolates. Three indigenous legumes (Swainsona formosa, Swainsona maccullochiana and Swainsona pterostylis) nodulated with fast-growing isolates and four species (Acacia saligna, Indigofera brevidens, Kennedia coccinea and Kennedia prorepens) nodulated with both fast- and slow-growing isolates. Swainsona kingii did not form nodules with any isolates. Fast-growing isolates were predominantly acid-sensitive, alkaline- and salt-tolerant. All slow-growing isolates grew well at pH 9.0 whilst more than half grew at pH 5.0, but all were salt-sensitive. All isolates were able to grow at 37deg;C. The fast-growing isolates utilised disaccharides, whereas the slow-growing isolates did not. Symbiotic interactions of the isolates were assessed on three annual, one biennial and nine perennial exotic legume species that have agricultural use, or potential use, in southern Australia. Argyrolobium uniflorum, Chamaecytisus proliferus, Macroptilium atropurpureum, Ononis natrix, Phaseolus vulgaris and Sutherlandia microphylla nodulated with one or more of the authenticated isolates. Hedysarum coronarium, Medicago sativa, Ornithopus sativus, Ornithopus compressus, Trifolium burchellianum, Trifolium polymorphum and Trifolium uniflorum did not form nodules. Investigation of the 31 authenticated isolates by polymerase chain reaction with three primers resulted in the RPO1 primer distinguishing 20 separate banding patterns, while ERIC and PucFor primers distinguished 26 separate banding patterns. Sequencing the 16S rRNA gene for four fast- and two slow-growing isolates produced the following phylogenetic associations; WSM1701 and WSM1715 (isolated from Lotus cruentus and S. pterostylis, respectively) displayed 99% homology with Sinorhizobium meliloti, WSM1707 and WSM1721 (isolated from Sinorhizobium leeana and Indigofera sp., respectively) displayed 99% homology with Sinorhizobium terangae, WSM1704 (isolated from Tephrosia gardneri) shared 99% sequence homology with Bradyrhizobium elkanii, and WSM1743 (isolated from Indigofera sp.) displayed 99% homology with Bradyrhizobium japonicum.

Item Type: Journal Article
Murdoch Affiliation(s): Centre for Rhizobium Studies
Publisher: Elsevier BV
Copyright: © 2004 Published by Elsevier Ltd.
Item Control Page Item Control Page