
 

 

 

MURDOCH RESEARCH REPOSITORY 
 
 

http://dx.doi.org/10.1109/TENCON.2000.893677  
 

Xie, H. and Fung, C.C. (2000) Enhancing the performance of a 
BSP model-based parallel volume renderer with a profile 

visualiser. In: TENCON 2000, 24-27 September 2000, Kuala 
Lumpur, Malaysia, pp I-295-I-298. 

 
 
 
 

http://researchrepository.murdoch.edu.au/14858/ 
 
 
 
 
 
 
 

 
 Copyright © 2000 IEEE 

 
Personal use of this material is permitted. However, permission to reprint/republish 
this material for advertising or promotional purposes or for creating new collective 
works for resale or redistribution to servers or lists, or to reuse any copyrighted 

component of this work in other works must be obtained from the IEEE. 
 

 

http://dx.doi.org/10.1109/TENCON.2000.893677
http://researchrepository.murdoch.edu.au/14858/


Enhancing the Performance of a BSP 
Model-Based Parallel Volume Renderer with a 

Pofile Visualiser 

Hong Xie 
Department of Information Technology 

Murdoch University, 
Murdoch, WA 6150, 

Australia 
H.Xie@murdoch.edu.au 

Abstract: Volume rendering is computation 
intensive and can benefit from the combined 
processing power of a workstation cluster. 
Carefully balancing the workload among all 
workstations in the cluster is critical in 
achieving high efficiency in parallel volume 
rendering. In this paper we describe how the 
load balance of a BSP model-based parallel 
volume render program can be improved 
substantially using a profile visualiser. The 
profile visualiser distinguishes between the 
two types of load imbalance: those caused by 
the poor design of the parallel volume renderer 
and those caused by the sharing of the 
workstations by the other users. This 
information allows us to concentrate on 
improving the performance of the parallel 
program by designing a better load balance 
strategy for the parallel volume render. 

Keywords 

Volume rendering, BSP, visualisation, load 
balance. 

I. PARALLEL VOLUM 
RENDERING 

In medical imaging such as Computerised 
Tomography (CT), Magnetic Resonance 
Imaging (MRI), Positron Emission 
Tomography (PET) and Single Photon 
Emission Computed Tomography (SPECT), 
volume rendering plays a crucial role in the 
analysis and visualisation of the 3D images 
[ 1,2,3]. In contrast to surface rendering, 
volume rendering directly transforms the 
density information of a volume into grey or 
colour intensity in the 2D viewing plane 
without the need of detecting, formatting or 
modelling the object surfaces. Volume 

0-7803-6355-8/00/ $10.00 0 2000 IEEE 

Chun Che Fung 
School of Electrical and Computer Engineering 

Curtin University of Technology 
Bentley, W.A. 

Australia 
TFUNGCC @cc.curtin.edu.au 

rendering avoids the difficult segmentation 
process and the possible artifacts that will be 
introduced. It also provides a better mechanism 
for displaying weak or fuzzy surfaces and 
internal structures. 

Volume rendering, however, involves 
huge amount of data and is extremely 
computation intensive. For example, a typical 
volume of 128~256x256 voxels contains 16 M 
bytes of raw data. If the surface gradients are 
kept, it can take up to 128 M bytes of memory. 
To generate a single image from such a volume 
requires billions of floating point operations. 
This can take up a few minutes to hours of 
computing time, depending on the performance 
of the machine, the rendering algorithm used, 
and the image quality required. Obviously, this 
is unacceptable for real-time and interactive 
applications. This has provided the motivation 
for many research efforts into the development 
of parallel rendering algorithms. 

The Bulk Synchronous Parallel (BSP) 
model has been proposed as a parallel 
programming model independent from the 
details of the parallel hardware [4]. Under the 
BSP model, a parallel machine consists of a set 
of processor-memory pairs connected by an 
efficient communication network that supports 
the remote memory access and the barrier 
synchronisation of all processors. A BSP 
computation consists of a collection of 
processes, proceeding in phases. Each phase is 
called a superstep. All processes are 
synchronised by a barrier synchronisation at 
the end of each superstep. Within each 
superstep, a process performs computation on 
data held locally. It also initiates remote data 
accesses. However these remote data accesses 
are asynchronous (i.e. non-blocking), and none 
is guaranteed to complete until the end of the 
superstep, where the barrier synchronisation of 

1-295 



all processes take place. Therefore these 
remote data are not guaranteed to be available 
until the beginning of the next superstep [5]. A 
research group at Oxford University has 
implemented a C programming library for 
writing parallel programs based on the BSP 
model [6]. A BSP model based parallel volume 
renderer was shown to have achieved high 
parallel efficiency [7]. Figure 1 shows two 3D 
images generated by this parallel volume 
render. 

Figure 1: Two 3D images rendered from two 
volume data sets 

In this paper, we will show how the 
BSP model-based parallel volume renderer [7] 
is enhanced using a superstep profiling system. 
The parallel program runs on many parallel 
machines including workstation clusters. One 
of the most important factors that affect the 
overall performance of a BSP model based 
parallel volume renderer is whether the 
computation maintains a balanced workload on 
all processors. This requires a careful design of 
the load balance strategy so that each process 
gets an equal share of the work during the 
computation, particularly during those 
computation intensive supersteps. 

In the workstation cluster situation, 
however, the problem is complicated by the 
fact that most workstation clusters are used as 
shared resources. Therefore the ultimate load 
balance of the cluster is affected not just by the 
load balance of a specific parallel program, but 
also by the usage pattern of the workstations 
by other users. The later is often unpredictable 
and is generally outside the control of the 
designers of the parallel program. 
Unfortunately it causes the fluctuation of the 
execution time, of the parallel program, and 
worse, it hides the true picture of the load 
balance situation of the parallel program under 
development. With the profile visualiser we 
can see whether the load balance is caused by 

the poor load balance strategy of the parallel 
program or by the other user programs running 
at the same time. We discuss the two types of 
load imbalance in details in the next section. 

11. TWO TYPES OF LOAD 
IMBALANCE 

The performance of a parallel program running 
on a multi-user, shared, workstation cluster is 
affected by two different types of load 
balancing issues. The first type of load 
imbalance is caused by the poor load balance 
strategy used in the parallel program. Such 
load imbalance is intrinsic to the program, as it 
will occur every time the program is running, 
even when the machine is dedicated to that 
single program. This type of load balance 
problem can be solved by devising a better 
load balancing strategy in the parallel program. 

The second type of load imbalance is 
caused by the factors outside of the control of 
the parallel program. Usually it is due to 
uneven workload among different 
workstations, because one or a few machines 
in the cluster are more heavily used than other 
workstations by programs other than the 
parallel program under development. Since it 
is not easy to predict how and when other users 
will use the shared the workstations, the 
behaviour of the parallel program can not 
always be repeated. In general, this type of 
load balance problem cannot be easily solved 
by redesigning the parallel program. It is 
possible that future operating systems for 
workstation clusters may incorporate some 
kind of dynamic load balance strategy in 
process and thread scheduling to alleviate the 
problem. However that is outside of the scope 
of this paper. 

Much of the current efforts in parallel 
programming are to achieve as much as we can 
a balanced workload among all processors. In 
order to improve the load balance of a parallel 
program, we need to identify the first type of 
the load imbalance. Unfortunately when the 
program runs on a shared workstation cluster, 
it becomes difficult to separate the two types of 
load imbalance from the overall timing data. 

For example, Figure 2 shows the 
timings of running an earlier version of our 
parallel volume renderer twice on each of the 
clusters with 1 to 12 workstations, compared to 
the theoretical times (ie one-processor time 
divided by the number of processors). The 
diagram reveals two facts: 1) there is a 
significant gap between the observed times and 
the theoretical times. This suggests that there 

1-296 



may be load imbalances that increase the 
execution times. 2) the figure consistently 
shows that the same program (with the same 
input data) takes different times to complete on 
the same machine. This suggests that there 
exist the second types of load imbalances. It is 
difficult, however, to conclude whether the 
parallel program itself is load balanced (in 
terms of the first type load balance problem), 
and if it is not well balanced, how severely 
the imbalance is and where the imbalance 
occurred in the program. 

In the next section we will describe a 
BSP profiler and visualiser that can be used to 
separate the two types of load imbalance, thus 
providing important clue as where the load 
imbalances are located and how to improve the 
load balance of the BSP program. 

Time (seconds) 

2604 

180 
160 
140 

120 
100 
80 
60 

40 
20 

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2  
no. of processors 

-+-rend1 - elapsed time (runl) 

+ rendl - elapsed time (run2) 

rendl - ideal time 

Figure 2. Times taken to run the same 
program on the clusters with 1 to 12 
workstations. 

111. PROFILE VISUALISER 
The load imbalance of the parallel volume 
renderer is analysed through the disclosure of 
the process load balance for each superstep. 
Two components are included in the superstep 
profiling system: a performance profiling tool, 
and a profile visualisation tool. The former 
component is designed to obtain 
comprehensive profiling information including 
time costs for both computation and inter- 
process communication between the processes. 
The profiling information is then displayed and 
shown as performance profiling graphs using 
the visualisation tool. The performance 

profiling tool is written in C and is linked to 
the BSP program. When the BSP program 
runs, the superstep profile is generated 
automatically for each run. The profile 
visualiser is written in Java. It displays the 
superstep profile in an easy-to-understand 
graphical format. The superstep profile graphs 
show for each superstep, the user and system 
time taken by the parallel program as well as 
the total elapsed time during the superstep. 
Any load imbalance will be exposed and 
highlighted. 

Figure 3. A superstep profile graph 

For example Figure 3 shows a 
superstep profile graph. The profile was 
obtained from the profile data generated by 
running the parallel volume renderer on a 
cluster with 8 workstations. The graph shows 
boththe first type of imbalance and the second 
type of imbalance (on workstation P6 in 
superstep 2). This graph reveals that the load 
balance strategy used by the parallel program 
did not perform very well, hence there is a 
significant potential to lift to the performance 
of the program by devising a better load 
balance strategy. It also shows that the 
observed performance of the parallel program 
was distorted because workstation P6 was 
overloaded with other tasks, hence slows down 
the speed of the program by roughly 7 seconds. 
We can realistically expect that the same 
program could take 7 less seconds to complete 
on the same machine if no other users are 
using the machine at the same time. The graph 
also shows in which supersteps the imbalances 
occurred. This information provided us 
important clue on how to improve the load 
balance of the above mentioned parallel 
program. The revised parallel program 
achieves much better load balance [7]. Figure 4 

1-297 



shows the improved performance for the 
revised program (with a better load balance 
algorithm). The data shown in Figure 4 were 
obtained by running the revised program (with 
the same input data) on the same set of clusters 
used in Figure 2, when no other users were 
using the machines. Compared to Figure 2, 
Figure 4 shows a much improved overall 
performance of the volume renderer. 

Time (seconds) 

215 

135 
115 
95 
75 
55 
35 
15 

+ Rend2b-Elapsed 

+ Rend2b-CPU no. of processors 
Rend2b-Ideal 

Figure 4. Comparision: results obtained 
from the new load balance strategy 

IV. CONCLUSION 
In developing parallel program, especially 
parallel programs based on the BSP model, 
load balance is critical in achieving high 
parallel efficiency. While workstation clusters 
provide a cheap alternative for parallel 
computing, the nature of the multi-user, shared 
user environment often complicates the 
parallel program development. This is because 
the irregular and unpredictable usage pattern of 
the workstations often distorts the true picture 
of the performance of the parallel program 
under development. To use the workstation 
clusters to develop efficient parallel programs, 
especially BSP programs, it is desirable to be 
able to distinguish the load imbalance caused 
by the parallel program itself and that caused 
by the other user programs. In this paper we 
described just such a software tool. The 
superstep profiling system can reveal the two 
different types of load imbalance and their 
locations in an easy-to-understand graph. We 
have also demonstrated the usefulness of this 
tool by showing how the load imbalance in a 
BSP model-based parallel volume renderer 
was discovered. The discovery and isolation of 
the load imbalance provided us with important 
insight and clue on how to improve the load 
balance of the parallel volume renderer. 

References 

R.A. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering. Computer Graphics, 22(4):65- 
74, August 1988. 

M. Levoy. Display of surfaces from volume data. IEEE Computer Graphics and Applications, 
May 1988, pp.29-37. 
H.-P. Meinzer, K. Meetz, and D. Scheppelmann. The Heidelberg ray tracing model. IEEE Computer 
Graphics and Applications, pages 34-43, November 1991. 

Valiant, L.G.: “A bridging model for parallel computation”, Communications of the ACM, Vol. 

McColl, W. F.: Scalable computing. In J. van Leeuwen (Ed.), Computer Science Today: Recent 
Trends and Developments, LNCS Vol. 1000, (1995) pp. 46-61, Springer-Verlag. 

Hill, J.M.D., McColl, W. J M D Hill, B McColl, D.C. Stefanescu, M.W. Goudreau, J.M.D. Hill, 
K. Lang, S.B. Rao, T. Suel, T. Tsantilas and R H Bisseling: BSPlib: The BSP Programming 
Library. Parallel Computing, Vol. 24, No. 14, 1998, pages 1947-1980 

Xie, H.: “Slit-light Ray Tracing of Medical Slices on Multiple Processors: the BSP Approach”, 
Proceedings of the 21” Australiasian Computer Science Conference (ACSC’98), Perth, 4-6 
February (1998). In Australian Computer Science Communications, V01.20, No. 1, pp. 145-155., 
Springer. 

33, NO. 8, (1990) pp. 103-1 11. 

1-298 


	Cover page version IEEE
	BSP model-based parallel volume renderer

