Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Non-destructive oil extraction from Botryococcus braunii (Chlorophyta)

Moheimani, N.R.ORCID: 0000-0003-2310-4147, Cord-Ruwisch, R., Raes, E. and Borowitzka, M.A.ORCID: 0000-0001-6504-4563 (2013) Non-destructive oil extraction from Botryococcus braunii (Chlorophyta). Journal of Applied Phycology, 25 (6). pp. 1653-1661.

PDF - Authors' Version
Download (544kB) | Preview
Link to Published Version:
*Subscription may be required


Some of the key reasons for why the production of biofuels from microalgae have not yet succeeded as a source of sustainable transport fuel are the costs involved and the amount of energy needed to obtain the oils compared to the energy contained in the final fuel. The key energy costs are in the dewatering of biomass followed by extraction of the oil, disposal of biomass, and the energy content of the nutrient fertiliser needed for regrowing the algae. In this study, we bypass all of these barriers by using a different approach towards cutting energy and fertiliser costs in the production of biofuels from microalgae-rather than growing the algae in the presence of fertilisers such as N and P, followed by harvesting the whole algae cells, and the energetically costly drying of cells and extraction of the fuel from the cells, this process makes use of the natural tendency of the green alga, Botryococcus braunii to release oils from the cell into the extracellular matrix during and after growth. Here, we non-destructively and repeatedly harvest the external oil (hydrocarbons) from B. braunii CCAP 807/2. Extraction with several solvents showed that hexane was not compatible with B. braunii, but that heptane in contact with B. braunii for less than 20 min did not negatively affect this alga. As an alternative, solvent-free method, we tested physical methods of extracting the extracellular oil. Light and temperature did not affect the extraction of the external oil from Botryococcus, but gentle pressure (i.e. 'blotting') was an effective method for external oil recovery. Less than 1 h of blotting also did not affect the physiology of Botryococcus. Both the heptane extraction and the non-destructive 'blotting' methods had no significant effect on growth and photosynthesis (Fv/Fm, ETRmax) of B. braunii. Our results indicate that over a period of 6 days, we can repeatedly extract over 35 % (using heptane) and 1 % (using 'blotting') of the total oil, mainly in the form of external hydrocarbon in stationary phase cells without damage to the cells

Item Type: Journal Article
Murdoch Affiliation(s): Algae & Seagrass Research Group
School of Veterinary and Life Sciences
Publisher: Springer Verlag
Copyright: © Springer Science+Business Media Dordrecht 2013
Item Control Page Item Control Page


Downloads per month over past year