Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Advances in games technology: Software, models, and intelligence

Prakash, E., Brindle, G., Jones, K., Zhou, S., Chaudhari, N.S. and Wong, K.W. (2009) Advances in games technology: Software, models, and intelligence. Simulation & Gaming, 40 (6). pp. 752-801.

Link to Published Version:
*Subscription may be required


Games technology has undergone tremendous development. In this article, the authors report the rapid advancement that has been observed in the way games software is being developed, as well as in the development of games content using game engines. One area that has gained special attention is modeling the game environment such as terrain and buildings. This article presents the continuous level of detail terrain modeling techniques that can help generate and render realistic terrain in real time. Deployment of characters in the environment is increasingly common. This requires strategies to map scalable behavior characteristics for characters as well. The authors present two important aspects of crowd simulation: the realism of the crowd behavior and the computational overhead involved. A good simulation of crowd behavior requires delicate balance between these aspects. The focus in this article is on human behavior representation for crowd simulation. To enhance the player experience, the authors present the concept of player adaptive entertainment computing, which provides a personalized experience for each individual when interacting with the game. The current state of game development involves using very small percentage (typically 4% to 12%) of CPU time for game artificial intelligence (AI). Future game AI requires developing computational strategies that have little involvement of CPU for online play, while using CPU's idle capacity when the game is not being played, thereby emphasizing the construction of complex game AI models offline. A framework of such nonconventional game AI models is introduced.

Item Type: Journal Article
Murdoch Affiliation(s): School of Information Technology
Publisher: Sage Publications
Copyright: © The Author(s) 2009
Item Control Page Item Control Page