A PHOTOVOLTAIC TRAINING FACILITY ON THE MURDOCH UNIVERSITY ENGINEERING & ENERGY BUILDING’S NORTH EAST ROOF

Stuart Kempin

Unit Coordinator: Gareth Lee
Supervisor: Dr Martina Calais
Associate Supervisors: Dr Trevor Pryor, Mr Simon Glenister
Except where I have indicated, the work I am submitting in this report is my own and has not been submitted for assessment in another course.

Signed:

Date:
I am satisfied with the progress of this thesis project and that the attached report is an accurate reflection of the work undertaken.

Signed:

Date:
Abstract

Murdoch University’s School of Engineering and Energy is expanding its facilities to include a total of 8.2kWp, Photovoltaic (PV) Training Facility. This facility has incorporated four types of PV modules and equipment, including mono-crystalline, poly-crystalline, amorphous, and copper indium gallium selenide thin film modules; isolated, high frequency isolated, and transformerless inverters; AC and DC test points; emergency stop button system and other safety devices; a battery bank, and power meters.

These facilities will provide a versatile educational resource for students to analyse the behaviours of a wide variety of PV technologies.

This project has examined the process of writing an Invitation To Offer (ITO), reviewing the ITO with recommendations for future engineering projects, and detailing changes in the design of the systems as the project developed.

A recommendation has been detailed in this project for the inclusion of a PV monitoring station, which should monitor environmental parameters at the PV site.

A manual and simulated performance ratio (PR) of all PV systems has been examined in this project. The manual estimate calculated a PR of 0.739 over the period of a year. For the simulated PR, PVSYST software was programmed and calculated a yearly PR of 0.745. This modelling indicates that the system performance would be comparable to similar systems in Perth.
Acknowledgements

I would like to thank my supervisors, Martina Calais, Trevor Pryor and Simon Glenister, for their guidance and support throughout this project. I would also like to thank the Office of Commercial Services, Julie Yewers, for demonstrating her professionalism in managing the project.

Throughout this project I have relied on the assistance of the following individuals, whose skills and willingness to help have proven that they are all experts of their fields and a great asset to the industry:

- John Boulton, for his support in providing useful contacts in sourcing components, and demonstrating skill in providing unique solutions in the constructing the battery enclosure.
- Wayne Clarke, for his advice on the safety requirements for the power analyser and sharing his knowledge of the University’s resources.
- Will Stirling, for providing advice on the University’s requirement to install data loggers.
- Sun Brilliance and TPE Services, for installing the photovoltaic systems.
- Hinco, for designing a product and providing recommendations on products to suit our requirements.
- Jayson Kok, for designing the National Instruments data logger for recording the environmental parameters.
Table of Contents

1. Introduction .. 1
 1.1 Background .. 1
 1.2 Scope of the Project .. 2

2. Invitation To Offer (ITO) .. 4
 2.1 Companies to Receive the ITO ... 4
 2.2 Fielding Questions ... 4
 2.3 Tender Decision .. 5
 2.4 Component Approvals .. 5
 2.4.1 Module Approval ... 5
 2.4.2 Inverter Approval ... 5
 2.4.3 Compatible Modules and Inverters ... 6
 2.5 Companies Involved in the Project ... 7

3. Feasibility, Development, and Changes of the System Design 8
 3.1 Weight Estimation .. 8
 3.2 Wind Loading ... 8
 3.3 Thin Film Modules .. 8
 3.4 Mounting Rail for the Modules .. 9
 3.5 Extra Low Voltage (ELV) Isolation ... 9
 3.6 Battery Bank .. 9
 3.6.1 Enclosure ... 9
 3.6.2 Battery Stand .. 10
 3.6.3 Battery Drip Tray ... 10
 3.6.4 Battery System Capacity ... 11
 3.6.5 Realisation of the Battery System .. 11
 3.6.6 Ventilation of the Battery Enclosure .. 11
 3.7 Energy Meters .. 12
 3.8 Emergency Stop Buttons ... 12
Engineering Thesis

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9</td>
<td>Cable Fixtures beneath the Modules</td>
<td>13</td>
</tr>
<tr>
<td>3.10</td>
<td>Patch Panels</td>
<td>14</td>
</tr>
<tr>
<td>3.10.1</td>
<td>Current Transformer</td>
<td>14</td>
</tr>
<tr>
<td>3.10.2</td>
<td>Series Connection</td>
<td>14</td>
</tr>
<tr>
<td>3.10.3</td>
<td>Shunt Connection</td>
<td>15</td>
</tr>
<tr>
<td>3.11</td>
<td>The Final Design</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Drafting a New Invitation To Tender (ITT)</td>
<td>17</td>
</tr>
<tr>
<td>4.1</td>
<td>Temperature</td>
<td>17</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Ambient</td>
<td>17</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Objects in Direct Sunlight</td>
<td>17</td>
</tr>
<tr>
<td>4.2</td>
<td>Clarity of ITO Requirements</td>
<td>18</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Installation of the Automatic Switchbox M (AS-Box), Sunny Backup 5000 (SBU5000), and Sunny Boy 1100 (SB1100)</td>
<td>18</td>
</tr>
<tr>
<td>4.3</td>
<td>Inverters</td>
<td>18</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Sunny Boy SB1100</td>
<td>18</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Inverter Layout</td>
<td>18</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Communication and Data Recording</td>
<td>19</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Password Protection</td>
<td>19</td>
</tr>
<tr>
<td>4.4</td>
<td>Arrays</td>
<td>19</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Specifying the Size of the Arrays</td>
<td>19</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Mounting Rail for the Modules</td>
<td>19</td>
</tr>
<tr>
<td>4.5</td>
<td>Backup System</td>
<td>20</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Battery Enclosure</td>
<td>20</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Cable Sizes and General Power Outlet(s) (GPO)</td>
<td>20</td>
</tr>
<tr>
<td>4.6</td>
<td>Cable Protection</td>
<td>21</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Cable Trays</td>
<td>21</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Cables Exposed to Ultraviolet (UV) Radiation</td>
<td>21</td>
</tr>
<tr>
<td>4.7</td>
<td>Emergency Stop Buttons (ESBs)</td>
<td>21</td>
</tr>
</tbody>
</table>
4.8 Patch Panels ... 21
4.9 Junction Boxes .. 22
4.10 Schedule and Documentation .. 23
 4.10.1 Meetings ... 23
 4.10.2 Reporting .. 24
5 Monitoring Equipment .. 25
 5.1 Background ... 25
 5.2 Recording Interval ... 26
 5.3 Climate Data ... 26
 5.3.1 Anemometer ... 27
 5.3.2 Wind Vane ... 27
 5.3.3 Ambient Temperature .. 27
 5.3.4 Module Temperature .. 27
 5.3.5 Pyranometer ... 28
 5.4 Data Loggers ... 29
 5.5 Monitoring Inverter Performance .. 30
 5.6 Monitoring AC and DC Voltages and Currents ... 30
6 Performance Ratio .. 31
 6.1 Manual Estimate ... 31
 6.1.1 Inverter and Module Performance ... 32
 6.1.2 SBU5000 Performance ... 38
 6.1.3 Efficiency of the Battery .. 39
 6.2 Computer Simulation ... 40
 6.2.1 Modelling .. 40
 6.2.2 Inputs .. 40
 6.2.3 Near Shading .. 41
 6.2.4 Far Shading .. 42
 6.2.5 Other Parameters ... 42
6.3 Results... 43

7 Discussion .. 45

7.1 Comparison of the Performance Ratio Results 45

7.2 Cable with the Banana Plug Adaptors .. 46

7.3 ITO Submissions ... 46

7.4 Detailed Design Prior to Installation ... 46

7.5 Importance of Team Meeting Minutes ... 47

7.6 Communication ... 47

7.7 Expected Battery Life ... 48

7.8 University Safety Precautions and Procedures 48

7.9 Learning Experiences ... 49

References .. 50

Appendix A .. 55

 The Specifications from the Original Invitation To Offer [2] 55

Appendix B .. 63

 Estimation of Weight on the Frame ... 63

 Detailed Calculation are Attached in an Excel Workbook 63

Appendix C .. 64

 Drawing for the suggested PV Training Facility 64

Appendix D .. 65

 Assets Currently Owned by the University - Battery Enclosures (Photo) 65

Appendix E .. 66

 Battery Enclosure Illustrations ... 66

Appendix F .. 67

 Battery Ventilation ... 67

Appendix G .. 68

 Line Diagrams for Array and Islanding Systems 68

Appendix H .. 74

 The Updated and Corrected Invitation To Tender 74

Appendix I .. 87

 Quotes Received for Purchasing and Installing the Monitoring Equipment. 87

Appendix J .. 89
Detailed Calculation are Attached in an Excel Workbook ... 90
Appendix K .. 91
 Shade modelling ... 91
 Solar PathFinder Photos ... 92
Appendix L ... 95
 PVsyst Simulation ... 95
List of Figures

Figure 1: Solyndra Cylindrical Module [1]... 5
Figure 2: Sketch of the battery enclosure viewed from the east side....................... 10
Figure 3: Estimated final flow and emergency stop button diagram for the installation. .. 16
Figure 4: U-Shaped module mounting bracket ... 19
Figure 5: Positions of the Solar Pathfinder taken March 8, 2011 [55]. 33
Figure 6: Performance Ratio of each inverter with its array 36
Figure 7: Manual Performance Ratio combining all the PV systems 37
Figure 8: A graph replicating the efficiency curve of a SBU5000 in relation to a 230V AC device (5kW load, 300 A DC Shunt) .. 38
Figure 9: PVsyst near shading model... 42
Figure 10: PVsyst Performance Ratio combining all the PV systems 44
Figure 11: Performance Ratio (PR) results for both the manual and simulated estimate .. 45
Figure 12: Suggested Locations of PV Training Facility Components [73] 64
Figure 13: Battery enclosure too large to be transported to the roof of the E&E Building .. 65
Figure 14: Illustration of the battery enclosure from the north side 66
Figure 15: A sketch of the battery enclosure from a top down view 66
Figure 16: Key for the system line diagrams .. 68
Figure 17: Line diagram of the proposed HVV Solar and Solar River system 68
Figure 18: Line diagram of the proposed SunPower and SMA SB2500HF system 69
Figure 19: Line diagram of the proposed Ample Sun and Fronius system 70
Figure 20: Line diagram of the proposed Q.Cells and SMA SB1700 system 71
Figure 21: Line diagram of the proposed Q.Cells and SMA SB1100 system 72
Figure 22: Line diagram of the proposed islanding system 73
Figure 23: Solar Pathfinder photo from position 1 [55]... 92
Figure 24: Solar Pathfinder photo from position 2 [55]... 92
Figure 25: Solar Pathfinder photo from position 3 [55]... 93
Figure 26: Solar Pathfinder photo from position 4 [55]... 93
Figure 27: Solar Pathfinder photo from position 5 [55]... 94
Figure 28: Solar Pathfinder photo from position 6 [55]... 94
List of Tables

Table 1: Manual Performance Ratio of each inverter with its module type and the combined performance ... 35
Table 2: PVsyst Performance Ratio combining all the systems 44
Table 3: The estimated weight from the PV systems on the frame [11, 65-67]. 63
Table 4: Details of the quotes received for the monitoring equipment [79-82] 87
Table 5: An estimated summary of the direct beam irradiance from the Solar Pathfinder photos .. 91