
Presentation
HEALTH-RELATED QUALITY OF LIFE IN THE WA HIV COHORT: 2008

Herrmann S, Duracinsky M, Lalanne C, McKinnon E, Acquadro C, Mallal S, Nolan D

Introduction

A new Patient-Reported Outcomes questionnaire to measure QOL in people living with HIV/AIDS has been developed.

The instrument, PROQOL-HIV, has undergone psychometric validation in 791 individuals from 8 countries including 102 people from the WA HIV Cohort Study.

Here we describe:
1. Factors influencing HRQL in the WA HIV Cohort Study
2. Some comparisons with other countries
3. The reliability and validity of the PROQOL-HIV questionnaire

Methods: (1) The PROQOL-HIV Questionnaire

Qualitative input from semi directive interviews revealed 12 dominant themes which informed the 70 item PROQOL-HIV questionnaire to be validated:
- Ability to work
- Social life
- Stigma
- Family
- Sexuality
- Spirituality
- Medication
- Energy/fatigue
- Psychological burden
- Leisure
- Ability to travel
- Resources

Methods: (2) The MOS-HIV SF 36

- general health perceptions
- physical functioning
- role functioning
- pain
- social functioning
- mental health
- energy
- health distress
- cognitive functioning
- quality of life

A physical health summary score: PHS
A mental health summary score: MHS

Methods

102 patients (792 globally) attending the Royal Perth Hospital Immunology Outpatient Clinic- completed three HRQL instruments:

1. (1) the 70-item PROQOL-HIV – to be tested
2. (2) the EQ-5D
3. (3) the MOS-HIV *
4. (4) a symptom questionnaire
Other information: Self reported missed doses in the preceding two weeks, demographic and biomedical data

The QOL score* from the PROQOL-HIV was expressed on a 0-100 point scale with higher values indicating better QOL.

*France, USA and Australia only, * standardised raw score
METHODS: (3, 4) The EQ-5D & Symptom Questionnaire

The EQ-5D is a standardised instrument for use as a generic measure of health outcome. It assess 5 traits:
- Mobility, self-care, usual activities, pain/discomfort, and anxiety/depression together with a general health state scored on a visual analogue scale.

Symptoms/health conditions were measured using a modified version of the self-completed HIV symptom index developed by Justice et al (2001).

RESULTS - Psychometric validation

PROQOL sub-scales
1. Physical Health & Symptoms (PHS)
2. Treatment Impact (TI)
3. Emotional Distress (ED)
4. Health Concerns (HC)
5. Body Image (BC)
6. Intimate relationships (SR)
7. Social Relationships (IR)
8. Stigma (St)

RESULTS: Patient characteristics: Australia N=102
- Mostly caucasian (80%) men (85%)
- Aged between 37 – 53 yrs (mean 45)
- The earliest diagnosis was in 1981 with half of the patients diagnosed before 2000 (n=47) and half since (n=55)
- Transmission commonly was MSM (53%)
- Hetero = 27%, IVDU = 20%
- Living alone (39%) vs with a partner (33%) vs with others (28%) and employed (80% vs 18%)
- Most common co-morbidity: depression (24%) followed by HCV (17%), psychiatric disorder (5%), CVD (3%) and HBV (2%)

RESULTS: Patients on protease inhibitors n = 42 (52%)
- More likely to be on BD regimen (p= 0.01)
- Take more tablets (p<0.001)
- Report more symptoms (p=0.007)

RESULTS: Patient characteristics: Australia antiretroviral therapy (ART), n = 87
- 87 pts on ART, 76% were 100% adherent
- 52% on protease inhibitors (PI)
- 70% on a once daily regimen
- 85% had an undetectable viral load
- Mean CD4 T cell count ranged from 6 – 62% average = 26%

RESULTS: PROQOL –HIV Score

All patients (n = 102)
50.2, 64.4, 77.6

Naïve patients (n= 13)
48.1, 64.1, 77.6

Treated patients (n=87)
50.9, 65.4, 79.8

Lowest, median and highest score
RESULTS: All Countries

Demographics

<table>
<thead>
<tr>
<th>Variable</th>
<th>West Australia N = 102</th>
<th>All countries N = 692</th>
<th>P - value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender m/f</td>
<td>85/15% (87/15)</td>
<td>60/40% (419/273)</td>
<td><0.001</td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>45</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Body Mass Index</td>
<td>25</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Diagnosis (=2008)</td>
<td>3 (7)</td>
<td>2 (5, 9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Transmission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Msm</td>
<td>53% (54)</td>
<td>27% (28)</td>
<td><0.001</td>
</tr>
<tr>
<td>Hetero</td>
<td>20% (20)</td>
<td>26% (175)</td>
<td><0.001</td>
</tr>
<tr>
<td>IVDU</td>
<td></td>
<td>10% (68)</td>
<td></td>
</tr>
<tr>
<td>Living alone</td>
<td>59% (40)</td>
<td>19% (131)</td>
<td><0.001</td>
</tr>
<tr>
<td>Secondary education</td>
<td>98% (100)</td>
<td>19% (126)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Co-morbidities and Substances

<table>
<thead>
<tr>
<th>Variable</th>
<th>West Australia N = 102</th>
<th>All countries N = 692</th>
<th>P - value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depression</td>
<td>24% (24)</td>
<td>10% (67)</td>
<td>0.037</td>
</tr>
<tr>
<td>Psychiatric disorder</td>
<td>5% (5)</td>
<td>6% (41)</td>
<td>NS</td>
</tr>
<tr>
<td>Hepatitis C</td>
<td>17% (17)</td>
<td>12% (72)</td>
<td>NS</td>
</tr>
<tr>
<td>Hepatitis B</td>
<td>2% (2)</td>
<td>6% (36)</td>
<td>NS</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>3% (3)</td>
<td>11% (69)</td>
<td>NS</td>
</tr>
<tr>
<td>Alcohol (>2/day)</td>
<td>15% (15)</td>
<td>8% (47)</td>
<td>0.027</td>
</tr>
<tr>
<td>Tobacco (>2/day)</td>
<td>40% (41)</td>
<td>28% (163)</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Treatments and Outcomes

<table>
<thead>
<tr>
<th>Variable</th>
<th>West Australia N = 102</th>
<th>All countries N = 692</th>
<th>P - value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment/naive</td>
<td>85% (87)</td>
<td>86% (596)</td>
<td>NS</td>
</tr>
<tr>
<td>Dosing schedule (no. 80, >80)</td>
<td>70.5% (62) = 0, 20.5% (20) = 80</td>
<td>18% = 00, 82% = (>80)</td>
<td><0.001</td>
</tr>
<tr>
<td>ART pill burden</td>
<td>3 (20.4)</td>
<td>5 (18)</td>
<td><0.001</td>
</tr>
<tr>
<td>100% Adherence (last 2 weeks)</td>
<td>79% (84)</td>
<td>70% (512)</td>
<td><0.04</td>
</tr>
<tr>
<td>CD4 T Cell copies/ml</td>
<td>579 (77)</td>
<td>405</td>
<td><0.001</td>
</tr>
<tr>
<td>Viral load (undetectable)</td>
<td>75% (77)</td>
<td>85% (377)</td>
<td>NS</td>
</tr>
<tr>
<td>No of symptoms</td>
<td>7 (9)</td>
<td>9</td>
<td>0.018</td>
</tr>
</tbody>
</table>

Differences in sub-scales according to country

RESULTS: Differences in sub-scales according to country

- **Australia, US & France**
- **Brazil & Thailand**
- **China & Cambodia**
- **Senegal**

Symptom burden</i> (≥5)

- **Depression**
- **Dosing schedule (≥BD)**
- **Pill burden (>2 tablets)**
- ** Psychiatric disorder**
- **CD4 T-cell count (<200 cps/ml)**
- **Lack of Professional activity**
- **Gender (female)**
- **Living alone**
- **Cardiovascular disease**

Symptom burden</i> (≥5)

- **Depression**
- **Dosing schedule (≥BD)**
- **Pill burden (>2 tablets)**
- ** Psychiatric disorder**
- **CD4 T-cell count (<200 cps/ml)**
- **Lack of Professional activity**
- **Gender (female)**
- **Living alone**
- **Cardiovascular disease**

Quality of Life

PROQOL std score

- **Australia, US & France**
- **Brazil & Thailand**
- **China & Cambodia**
- **Senegal**
Relationship of depression to PROQOL subscales

(Each sub-scale contributes equally) N = 102 Western Australians

RESULTS: Depression & Symptoms
- Participants who reported depression scored on average 13 points lower (95% CI, [-20.8; -6.2])
- For each increase in the number of reported symptoms, there is a loss of about 2 points of HRQL (95% CI, [-2.3; 1.1]).

RESULTS: Multivariate analysis - Australians

<table>
<thead>
<tr>
<th>Variable</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of symptoms</td>
<td><0.001</td>
</tr>
<tr>
<td>Depression</td>
<td><0.001</td>
</tr>
<tr>
<td>Living alone</td>
<td>0.005</td>
</tr>
<tr>
<td>Younger age</td>
<td>0.003</td>
</tr>
<tr>
<td>Heterosexual transmission</td>
<td>0.008</td>
</tr>
<tr>
<td>On a protease inhibitor</td>
<td>0.046</td>
</tr>
</tbody>
</table>

Linear Regression Analysis
Lower scores were associated with more symptoms, depression, younger age, heterosexual transmission, not living with a partner, PI treatment and higher pill burden

Reliability and Validity

Q Is the PROQOL-HIV a "valid" PRO questionnaire? Does it measure what it is required to measure?

Q Is the PROQOL-HIV a "reliable" PRO questionnaire? Are the observed scores reproducible when the questionnaire is readministered?
Joint distribution of PROQOL-HIV scores and EQ-5D visual analogue score

The visual analogue scale = “your own health state today”:
Best imaginable health state = 100% worst imaginable = 0%

VALIDITY

Scores reliability was assessed using

- Cronbach’s alpha = 0.936
 (95% CI = 0.929 – 0.943)
- Intra-class correlation coefficient = 0.859
 (n= 34, 95% CI = 0.701-0.959)

RELIABILITY

The PROQOL-HIV is a ‘valid’ PRO questionnaire
It measures what it purports to measure

The PROQOL-HIV is a ‘reliable’ PRO questionnaire
The scores observed are reproducible when the questionnaire is readministered

SUMMARY

In Western Australia in 2008
- The most significant health condition influencing quality of life was depression
- 30% of depressed patients also had hepatitis C
- Depression and the number of reported symptoms were related
- People who acquired HIV heterosexually seem to have worse quality of life
- Patients on PIs reported more symptoms/health conditions

SUMMARY SUMMARY

- The PROQOL-HIV is a ‘valid’ PRO questionnaire
 It measures what it purports to measure
- The PROQOL-HIV is a ‘reliable’ PRO questionnaire
 The scores observed are reproducible when the questionnaire is readministered

COMMENTS

There is an indication to examine:
- The ‘social drivers’ of depression in the context of HIV and coinfections
- The role of stigma and shame and how stigma affects PLWHA
- There exists a need to
 - Consider how societal inequalities for example within gender and ethnicity are exacerbated by HIV and impact on QOL*
 - Intervene to reduce substance use and prevent significant associated morbidity

*Kippax et al 2007

CONCLUSION

- The data demonstrate the validity and utility of the PROQOL-HIV to measure QOL in this population.
- The implications of a high frequency of depression is concerning
- Rates of adherence are encouraging and are probably the outcome of active ongoing adherence support
- The information is a useful adjunct to national surveys and can be used to inform HIV services in WA.
Acknowledgements: study sites

France
Prof. J. Defraigne
Service de Médecine Interne et de Maladies Infectieuses
Hôpital Universitaire de Bicêtre (AP-HP)

Brazil
Marcio Schumacher, MD PhD
Professor of Infectious Diseases
Hepa, AIDS Research Laboratory
Hospital Universitário Clementino Fraga Filho
Universidade Federal do Rio de Janeiro

China
Prof. Liu Ping Fang PhD
Director, School of Public Health
Sun Yat-Sen University
Guangzhou, China

India
Dr Rewa Kholi
Behavioural Scientist
National AIDS Research Institute
Pune, INDIA

Sénégal
Pr Papa Salif Sow
CHNU de Fann, Dakar, Sénégal

Thailand
Marc Lallemant, MD - Programs for HIV Prevention and Treatment (PHT)
Sage Sansarit
Chiang Mai, Thailand

Cambodia
ESN628
Echec pour une Solidarité Thérapeutique
Hôpital Calmette, Hôpital Pavie
Phnom Penh,

Johns
Prof. Robert Murphy, MD, Director of Clinical Research
Sidaction

USA
Prof. Robert Murphy, MD, Director of Clinical Research
Sidaction

Disclosure slide

Susan Herrmann
Mark Duray
Catherine Acquaro
Christophe Lalanne
Simon Mott
David Nolan

Grants/Research Support

#include <iostream>

using namespace std;

int main()
{
 // Code to read and process the natural text
 // from the document
 //...
 return 0;
}