The surveillance and risk assessment of wild birds in northern Australia for highly pathogenic avian influenza H5N1 virus

This thesis is presented for the degree of Doctor of Philosophy at Murdoch University

by

John M Curran

B.V.Sc.

2012

School of Veterinary and Biomedical Sciences

Faculty of Health Sciences

Murdoch University

Western Australia
Declaration

I declare that this thesis is my own account of my research and contains as its main content, work which has not previously been submitted for a degree at any tertiary education institution.

John Milford Curran
Abstract

Highly pathogenic avian influenza (HPAI), caused by infection with H5N1 virus, is a transboundary disease which has had a significant socio-economic impact on the poultry production systems of Eurasia, and spillover events with mortality in humans and wild birds. In northern Australia, prior to the current study there was poor understanding of the ecology of avian influenza viruses (AIV) and the risks of H5N1 transmission by wild birds. In this study, the biological pathways of risk for HPAI H5N1 by migratory birds were estimated as a negligible to very low risk to the wild birds of northern Australia. Following stochastic modelling the highest mean frequency of outbreaks was 1 year in 36 years (range 1 in 25-53 years; annual incidence of 0.028) for the Little Curlew (Numenius minutus), followed by the Sharp-tailed Sandpiper (Calidris acuminata) (1 in 56 years, range 36 to 91 years).

Three species of wild birds were challenged with a H6N2 low pathogenicity AIV (LPAIV). There was poor viral replication in the Ruddy Turnstones (Arenaria interpres) and Silver Gulls (Chroicocephalus novaehollandiae) with mostly low titre oropharyngeal (OP) excretion [median titre at 4 days post inoculation (DPI) of $10^{1.43}$ and $10^{2.09} 50\%$ embryo infectious dose (EID$_{50}$/0.1 mL respectively], with the exception of an OP sample from one Silver Gull ($10^{4.26}$ EID$_{50}$/0.1 mL at 2 DPI), and one cloacal sample from a Ruddy Turnstone ($10^{3.14}$ EID$_{50}$/0.1 mL at 10 DPI). In the Wandering Whistling Ducks (Dendrocygna arcuata), there was gastro-intestinal tropism with moderately high titre viral excretion to 6 DPI (highest median titre of $10^{4.58}$ EID$_{50}$/0.1 mL in cloacal swabs at 4 DPI). The anti-haemagglutinin (HA) antibody response was poor in the ducks and
declined from 19-56 DPI [highest haemagglutination inhibition (HI) test reciprocal geometric mean titre (GMT) of 16.1 at 19 DPI to a GMT of 3.7 at 56 DPI]. In the ducks after 42 DPI, nucleoprotein (NP) c-ELISA antibodies waned slowly from a median of 81% inhibition, and were long-lived to at least 8 months with a 57% median inhibition value.

The evaluation of a commercial NP c-ELISA, HI test, Taqman Type A RRT-PCR and embryonating chicken egg (ECE) virus isolation methods suggests high validity of these tests in wild birds, comparable to that reported in poultry. The NP c-ELISA in high AIV prevalence situations had a 100% diagnostic sensitivity (95% CI 81.5, 100) and in controls had 91% diagnostic specificity (95% CI 70.8, 98.9). In low AIV prevalence situations using a ≥60% inhibition threshold for positivity relative to the HI test, c-ELISA performed with 90.5% diagnostic sensitivity (95% CI 86.2, 93.8) and 41.2% diagnostic specificity (95% CI 38.1, 44.5). Assessment of the HI test suggests that a titre of ≥8 is a significant result in wild birds, and using this titre the HI test had 83.3% diagnostic sensitivity (95% CI 58.6, 96.4) in the challenged birds. The Type A RRT-PCR test performance for cloacal swabs had high diagnostic sensitivity that varied between 83.3-100% and diagnostic specificity that varied between 94.1-100% over 2-6 DPI when evaluated against ECE virus isolation, with substantial to outstanding agreement (Kappa statistic=0.8) and significant positive correlation (r_s=0.82). The recommended thresholds for the Type A RRT-PCR at the Australian Animal Health Laboratory (AAHL) in poultry of CT<37 for positivity with an intermediate threshold (CT 37-40) were found to be valid in wild birds. The ECE virus isolation method performed well with 89% of virus positive birds positive on the first passage.
The virological surveillance of 7,830 wild birds supports Australia’s current claim of freedom from HPAI H5N1 virus. The AIV prevalence was negligible in Charadriiformes (apparent or test prevalence, AP=0%; 95% CI 0, 0.09), and very low in Anseriformes (AP=0.03%; 95% CI 0, 0.16), with only one virus (H6N1) isolated from a Plumed Whistling Duck (*Dendrocygna eytoni*). Overall the NP c-ELISA seroprevalence was 3.5 times higher (Odds Ratio=4.7; 95% CI 4.1, 5.3) in Anseriformes (AP=31%; 95% CI 29.5, 32.6) compared to Charadriiformes (AP=8.8%; 95% CI 8, 9.7) indicating marked differences in the ecology of AIV. Moreover, analysis of NP seroprevalence data showed a higher AIV risk exposure profile in the Plumed Whistling Duck and eight species of migratory shorebirds, and spatiotemporal variations, with a two year cyclical periodicity in the waterfowl at Kununurra. The role of shorebirds in AIV ecology is more likely to be as spillover hosts in shared ecosystems with potential for sporadic global transmission of AIV, rather than being conventional reservoir hosts.
Communications

Presented at conferences:

Acknowledgments

This thesis had its synthesis in 1992, when my veterinary and ornithology skills connected with the testing of shorebirds, encouraged by Dr Trevor Ellis (co-supervisor) and Dr Clive Minton (eminent ornithologist), who have both continued to provide fantastic support over the last 20 years to this work. My principal supervisor at Murdoch University, Prof Ian Robertson has also given positive encouragement, outstanding technical and hands-on support especially to my virus challenge trial, good humour and statistical nous. Thanks to both Ian and Trevor for their diligent editing skills. At AAHL many staff have assisted, in particular Paul Selleck who has provided valuable editing and expert knowledge and facilitated my serological work without hesitation.

The surveillance of wild birds was funded by the AQIS/NAQS program, with Beth Cookson, Joe Schmidt, Tim Kerlin and many others contributing. The energy and enthusiasm of Broome ornithologist, Chris Hassell, was critical to the waterfowl surveys in all manner of places under extreme conditions and for access to his precious shorebirds many times. Thanks to the now defunct AB-CRC, Peta Edwards, Lisa Adams and Debby Cousins for encouragement and financial support. In Perth, the help of Mark O’Dea, John Parkinson and Jenny Hills with my trial and during my month long stint in their laboratory was a very rewarding experience. Thanks also to Adrian Boyle and many other AWSG volunteers. I also acknowledge last, but not least, my loving wife Kandy, for always encouraging me to take this on so late in my career and for being the primary breadwinner whilst I exited from paid employment.
Table of contents

Declaration ... II

Abstract ... III

Communications ... VI

Acknowledgments .. VII

Table of contents ... VIII

Abbreviations ... XV

List of Unit Abbreviations .. XVI

List of Tables ... XVIII

List of Figures .. XXI

CHAPTER 1: INTRODUCTION AND REVIEW OF THE LITERATURE ... 1

1.1 Introduction ... 1

1.2 Avian influenza virus ... 3

 1.2.1 Taxonomy and morphology .. 3

 1.2.2 Viral replication ... 5

 1.2.3 Pathogenicity and determinants of virulence ... 7

 1.2.4 Evolutionary phylogeny of AIV in wild birds ... 11

 1.2.4 Evolution of HPAI H5N1 virus ... 14

1.3 Epidemiology of AIV .. 17

 1.3.1 Transmission and environmental ecology ... 17

 1.3.3 Epidemiology of AIV in Anseriformes ... 21

 1.3.4 Epidemiology of AIV in Charadriiformes .. 28
1.3.5 Epidemiology of AIV in other hosts ... 37
1.3.6 Epidemiology of HPAI H5N1 virus in wild birds 41
1.3.7 The role of wild birds in HPAI outbreaks in Australian poultry 52
1.3.8 Public health impact of HP and LPAI viruses ... 52

1.4 Diagnostic assessment of the biological responses to AIV infection 53
 1.4.1 Biological and humoral responses to AIV infection in wild birds 53
 1.4.2 Performance of AIV diagnostic tests in wild birds 55
 1.4.3 Serological AIV diagnostics in wild bird surveillance 57

1.5 Study aims and hypothesis ... 59

CHAPTER 2: MATERIALS AND METHODS ... 61

2.1 Field capture techniques ... 61
2.2 Wild bird sampling .. 63

2.3 Laboratory analyses .. 65
 2.3.1 AIV nucleoprotein c-ELISA testing (NP c-ELISA) 65
 2.3.2 Haemagglutination inhibition (HI) testing 67
 2.3.3 Taqman Type A RRT-PCR testing .. 68
 2.3.4 Embryonating chicken egg (ECE) virus isolation 70
 2.3.5 Neuraminidase inhibition (NI) assay and N1 c-ELISA testing 71
 2.4 Statistical methods .. 72
CHAPTER 3: ASSESSMENT OF THE BIOLOGICAL AND ANTIBODY RESPONSES TO
CHALLENGE WITH AN LPAIV IN THREE SPECIES OF WILD BIRDS73

3.1 Introduction ...73

3.2 Materials and Methods ...73

 3.2.1 Animals ...73
 3.2.2 Avian husbandry and welfare ...75
 3.2.3 Virus ..76
 3.2.4 Experimental design ...77
 3.2.5 NP c-ELISA ...80
 3.2.6 HI assay ..80
 3.2.7 Taqman Type A RRT-PCR ...80
 3.2.8 Virus titration and infectivity titre ...81
 3.2.9 Virus isolation ..81
 3.2.10 Statistical methods ...82

3.3 Results ...82

 3.3.1 Pre-challenge status ...82
 3.3.2 Post-challenge status ...83
 3.3.3 Antibody responses to virus challenge ..84
 3.3.4 Virus titration and infectivity titres ...92
 3.3.5 Respiratory and intestinal viral shedding ...92
3.4 Discussion .. 104

CHAPTER 4: AN EVALUATION OF AIV DIAGNOSTIC TESTS IN WILD ANSERIFORMES

AND CHARADRIIFORMES... 115

4.1 Introduction .. 115

4.2 Materials and Methods ... 116

4.2.1 Experimental challenge trial and surveillance testing ... 116

4.2.2 NP c-ELISA ... 116

4.2.3 AGID .. 117

4.2.4 HI testing .. 118

4.2.5 Taqman Type A RRT-PCR and virus isolation testing ... 119

4.2.6 Statistics .. 119

4.3 Results ... 120

4.3.1 Evaluation of the Taqman Type A RRT-PCR ... 120

4.3.2 Evaluation of storage conditions for virology samples ... 124

4.3.3 Evaluation of the NP c-ELISA in infected birds .. 125

4.3.4 Evaluation of the NP c-ELISA in surveillance testing ... 127

4.3.5 Evaluation of the HI assay ... 133

4.3.6 Correlation between NP c-ELISA, HI and RRT-PCR ... 134

4.3.7 Assessment of RDE treatment method for HI testing ... 135

4.3.8 Evaluation of AGID .. 136
4.4 Discussion .. 136

CHAPTER 5: SURVEILLANCE FOR AIV IN MIGRATORY SHOREBIRDS AND OTHER CHARADRIIFORMES ACROSS NORTHERN AUSTRALIA .. 153

5.1 Introduction .. 153

5.2 Materials and methods .. 153

 5.2.1 Surveillance strategy ... 153

 5.2.2 Field sampling .. 156

 5.2.3 Laboratory analyses ... 157

 5.2.4 Statistical analyses ... 158

5.3 Results .. 158

 5.3.1 Virological results ... 158

 5.3.2 Serological results using NP c-ELISA ... 159

 5.3.3 Temporal NP c-ELISA prevalence ... 168

 5.3.4 NP c-ELISA antibody profile of shorebirds from northwest Australia 170

 5.3.4 Serological results by HI .. 171

 5.3.5 Serological results by NI and N1 c-ELISA ... 172

5.4 Discussion .. 175

CHAPTER 6: SURVEILLANCE FOR AIV IN WILD WATERFOWL ACROSS NORTHERN AUSTRALIA 191

6.1 Introduction ... 191

6.2 Materials and methods ... 192

 6.2.1 Surveillance strategy .. 192
6.2.2 Field sampling of waterfowl .. 193
6.2.3 Laboratory analyses .. 194
6.2.4 Statistical analyses .. 194

6.3 Results .. 195
6.3.1 Virological results .. 195
6.3.2 Serological results using NP c-ELISA ... 196
6.3.3 Spatiotemporal NP c-ELISA data ... 199
6.3.4 NP c-ELISA antibody profile in Kununurra waterfowl 201
6.3.5 Serological results by HI testing .. 202
6.3.6 Serological results by NI testing .. 206

6.4 Discussion ... 206

CHAPTER 7: A RISK ASSESSMENT FOR HPAI H5N1 VIRUS TO WILD BIRDS IN
NORTHERN AUSTRALIA BY A MIGRATORY SHOREBIRD PATHWAY 221

7.1 Introduction ... 221

7.2 Materials and methods ... 224

7.2.1 Hazard identification .. 224
7.2.2 Wild bird population of interest .. 224
7.2.3 Risk question ... 230
7.2.4 Quantitative risk method .. 232
7.2.5 Risk pathways ... 232
7.2.6 Scenario tree calculation method ... 237
7.2.7 Sources of data for the risk quantification method .. 238
7.2.8 Expert opinion methodology ... 240
7.2.9 Statistical methods .. 242

7.3 Results .. 243

7.3.1 Review of the literature on H5N1 infection status 243
7.3.2 Review of the literature on biological and immune responses to HPAI H5N1 infection ... 248
7.3.3 Review of the literature on AIV and HPAI H5N1 environmental ecology 253
7.3.4 Results of the questionnaire to the AIV epidemiology experts 254
7.3.5 Results of the opinions from expert ornithologists 254
7.3.7 Risk estimation ... 261

7.4 Discussion ... 262

CHAPTER 8: GENERAL DISCUSSION AND CONCLUSIONS 279

APPENDIX 1: Individual challenge bird data .. 297

REFERENCES ... 309
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAHL</td>
<td>Australian Animal Health Laboratory</td>
</tr>
<tr>
<td>AD</td>
<td>average deviation</td>
</tr>
<tr>
<td>AGID</td>
<td>agar gel immunodiffusion test</td>
</tr>
<tr>
<td>AI/AIV(s)</td>
<td>avian influenza/avian influenza virus(es)</td>
</tr>
<tr>
<td>AP/App Prev</td>
<td>apparent (test) prevalence</td>
</tr>
<tr>
<td>AQIS</td>
<td>Australian Quarantine and Inspection Service</td>
</tr>
<tr>
<td>AWSG</td>
<td>Australasian Wader Studies Group</td>
</tr>
<tr>
<td>DAFWA</td>
<td>Department of Agriculture and Food Western Australia</td>
</tr>
<tr>
<td>DPI</td>
<td>days post inoculation</td>
</tr>
<tr>
<td>EAAF</td>
<td>East Asian-Australasian Flyway</td>
</tr>
<tr>
<td>ECE</td>
<td>embryonating chicken eggs</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>EMPRES</td>
<td>FAO’s Emergency Prevention Programme for Transboundary Animal Diseases</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>GMT</td>
<td>geometric mean titre</td>
</tr>
<tr>
<td>H/HA</td>
<td>haemagglutinin/haemagglutination</td>
</tr>
<tr>
<td>HI</td>
<td>haemagglutination inhibition test</td>
</tr>
<tr>
<td>HPAI</td>
<td>highly pathogenic avian influenza</td>
</tr>
<tr>
<td>HPNAIV</td>
<td>highly pathogenic notifiable avian influenza virus</td>
</tr>
<tr>
<td>LPAl</td>
<td>low pathogenicity AI</td>
</tr>
<tr>
<td>LPNAIV</td>
<td>low pathogenicity notifiable avian influenza virus</td>
</tr>
<tr>
<td>mAb</td>
<td>monoclonal antibody</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>NAQS</td>
<td>Northern Australia Quarantine Strategy</td>
</tr>
<tr>
<td>NI</td>
<td>neuraminidase inhibition</td>
</tr>
<tr>
<td>NDV</td>
<td>Newcastle Disease virus</td>
</tr>
<tr>
<td>NP</td>
<td>nucleoprotein</td>
</tr>
<tr>
<td>NT</td>
<td>Northern Territory (of Australia)</td>
</tr>
</tbody>
</table>
The World Organisation for Animal Health

OIE

OP oropharyngeal

PCR polymerase chain reaction

RRT-PCR real-time reverse transcription-PCR

PBST phosphate buffered saline Tween-20

QLD Queensland

RDE receptor destroying enzyme (II – Seiken)

RNA ribonucleic acid

SE standard error

SD standard deviation

TMB tetramethylbenzidine (Sigma T-2885)

USGS United States Geological Survey

VTM viral transport media

WA Western Australia

List of Unit Abbreviations

% percent

°C degree Celsius

CT cycle threshold

EID50 50% embryo infectious dose

mL millilitre

g grams

HAU haemagglutinating units

hr(s) hour(s)

km kilometre(s)

M molar

m metre(s)

min minutes

nm nanometres

nM nanomolar

OD optical density
ppm parts per million
IU international unit
secs seconds
TCID\textsubscript{50} 50\% median tissue culture infective dose
µg micrograms
µL microlitre
µm micrometre
x g times gravity (centrifugal force)
List of Tables

Table 3.1 Pre-challenge median NP c-ELISA results with average deviation (AD)........... 83
Table 3.2 Median NP c-ELISA % inhibition and c-ELISA percent positive at 28 DPI. 87
Table 3.3 Assessment of the Spearman’s correlation (r_s) between NP c-ELISA values and HI titres ≥8 for individual challenge birds to 28 DPI... 91
Table 3.4 Intestinal (cloacal) shedding of virus shown as C_T values from RRT-PCR testing and HA results from virus isolation (VI) following H6N2 virus challenge. 94
Table 3.5 Respiratory (oropharyngeal) shedding of virus shown as C_T values from RRT-PCR testing and HA results from virus isolation (VI) following H6N2 virus challenge. .. 96
Table 3.6 Percentage of cloacal and OP swabs from the ducks that were positive by VI and median infectivity titres from RRT-PCR positive swabs.. 98
Table 3.7 Median duration of viral shedding in the ducks from the cloaca and oropharynx, as calculated from birds with evidence of viral shedding in Table 3.4/5. ... 100
Table 3.8 Percentage of OP swabs from the gulls and turnstones positive by VI and median infectivity titres from the RRT-PCR positive swabs, by DPI......................... 101
Table 3.9 Results from RRT-PCR testing and virus isolation of individual pond water samples from the duck enclosure. ... 103
Table 4.1 The number of challenge trial birds (n=22) positive and negative by RRT-PCR and VI at different sampling intervals post inoculation. ... 121
Table 4.2 Assessment of diagnostic test parameters for RRT-PCR (C_T <40) against virus isolation testing in cloacal and OP swabs from challenge birds calculated in EpiTools. ... 123
Table 4.3 Comparison of median C_T value for all swabs with C_T <40 between virus isolation positive and negative groups.. 124
Table 4.4 Results from RRT-PCR and virus isolation testing of duck cloacal swabs under two temperature storage conditions. .. 125
Table 4.5 Percentage of infected challenge birds positive by NP c-ELISA (≥60% inhibition) and HI titre ≥8 by DPI (n=18). ... 127
Table 4.6 Evaluation of the NP c-ELISA in challenge trial birds with summary of positive test results for RRT-PCR, NP c-ELISA and HI post inoculation.......................... 127
Table 4.7 Assessment of the NP c-ELISA at different thresholds against significant HI results (≥8) in surveillance sera from Charadriiformes and Anseriformes.......... 129
Table 4.8 Evaluation of the NP c-ELISA diagnostic sensitivity and specificity (95% CI), likelihood ratios and predictive values at two thresholds from wild bird surveillance data* analysed in EpiTools. ... 131

Table 4.9 Comparison of the diagnostic sensitivity and diagnostic specificity characteristics of the NP c-ELISA for detection of HI antibody using ROC and EpiTools at various thresholds of inhibition. .. 132

Table 4.10 Evaluation of HI test diagnostic parameters against RRT-PCR using challenge trial data at 13 DPI and negative control and pre-challenge data in EpiTools (95% CI). .. 134

Table 5.1 Virology test numbers and serology test numbers by family, by species from 1992-2009 with NP c-ELISA seroprevalence (App Prev) and mean (c-ELISA prevalence and mean not shown where n <10). .. 160

Table 5.2 Summary of NP c-ELISA seroprevalence and mean inhibition values by family and by three Scolopacidae genera compared to the Charadriiformes group value (minus individual family or genera value). ... 166

Table 5.3 Comparison of NP c-ELISA seroprevalence and mean % inhibition values by species to the group value (minus individual species value). .. 167

Table 5.4 Temporal NP c-ELISA data from 2006-2009 with number positive/number tested (seroprevalence) by Scolopacidae species. Year totals show the proportion these species comprised of the total number positive. 169

Table 5.5 The NP c-ELISA antibody profile of shorebirds sampled annually from 2005-09 with numbers positive (%) in various ranges of inhibition. .. 170

Table 5.6 Number of Charadriiform sera with HI titre ≥8 (with reciprocal titre or GMT) across multiple HA subtype antigens. ... 173

Table 6.1 Number of positive Taqman Type A RRT-PCR samples (median C_T value) from 2006-2009. ... 196

Table 6.2 Results of the waterfowl samples tested by virology and serology from 1992-2009. The RRT-PCR results are shown in Table 6.1, and the c-ELISA data are not shown where n<10. ... 197

Table 6.3 Testing for significant differences in NP c-ELISA seroprevalence and mean % inhibition by species by comparison of the species value with the group mean value (minus the individual species value). ... 198

Table 6.4 Comparison of the NP c-ELISA seroprevalence between Magpie Geese and Plumed Whistling Ducks at Kununurra from 2004 to 2009. .. 200

Table 6.5 The antibody profile from the NP c-ELISA testing of Kununurra waterfowl sampled from 2004 to 2009. .. 201
Table 6.6 Number of significant HI titre results ≥8 (with reciprocal GMT) by species across multiple HA antigens. H5 subtype data includes test results for three H5 antigens. .. 204

Table 7.1 Description of the scenario tree model with nodes and flow of events leading to the possible entry and spread of HPAI H5N1 ... 235

Table 7.2 An overview of significant outbreaks of HPAI H5N1 infection in the wild birds of Eastern Asia since 2002 .. 244

Table 7.3 Published results from the surveillance for H5N1 and AIV in wild birds sampled across the EAAF outside of Australia... 245

Table 7.4 A summary of HPAI H5N1 inoculation experiments in various wild bird species (including both captive bred and wild caught species) with the biological responses and viral excretion titres from swabs. .. 249

Table 7.5 An overview of experimental studies that demonstrate the factors likely to determine viral persistence in the aquatic tropical environs of northern Australia .. 253

Table 7.6 The opinions of recognised experts in AIV epidemiology on questions relating to the risk assessment of HPAI H5N1 to northern Australia by migratory birds (scored from 0-5 as negligible to high) ... 255

Table 7.7 Maximum Australian regional population estimates (N_0) for the eight shorebird species and the opinions of the ornithology experts shown as min, most likely and max values for the proportions that annually migrate to Australia ($P1$) and for the risk factors on southward migration ($P2$-$P7$). .. 259

Table 7.8 The range of the eight shorebird species during the breeding season and known stopover locations on southward migration .. 260

Table 7.9 Results of the risk calculation by species with the number of outbreak years in 1000 years for each limb, combined risk as annual incidence and the overall outbreak frequency ... 261

Table 7.10 Results of the sensitivity analysis on the annual incidence of outbreaks from sequential change in input parameter values by ten-fold for the Eastern Curlew 262
List of Figures

Figure 1.1 Morphology and protein structure of AIV (NS2, found in small amounts in purified virions is not shown) (Lee and Saif 2009) .. 5

Figure 1.2 The replication of influenza virus in the host cell sourced from: http://www.microbiologybytes.com/virology/Orthomyxoviruses.html 7

Figure 2.1 Regional map of northern Australia showing wild bird sampling locations... 62

Figure 2.2 Figure shows the cannon netting method as the net is propelled over a mixed flock of waterfowl on the banks of the Ord River, Kununurra, WA. 63

Figure 3.1 Challenge trial wild bird species kept in captivity, (A) Silver Gull, (B) Ruddy Turnstone, (C) Wandering Whistling Duck, and (D) the Broome aviary facility....... 75

Figure 3.2 Inoculation of a Wandering Whistling Duck with H6N2 virus inoculum via the OP, conjunctival and nasal routes. ... 79

Figure 3.3 Graphs showing estimated median antibody levels for NP c-ELISA and the HI reciprocal GMT results for the (A) Wandering Whistling Duck, (B) Silver Gull and (C) Ruddy Turnstone, with error bars (AD and SD respectively). 87

Figure 3.4 Box plot* of NP c-ELISA % inhibition by species at 28 DPI. 88

Figure 3.5 Percent HI test positive (HI reciprocal titre ≥16) by species by DPI........ 90

Figure 3.6 Box plot* of infectivity titres (EID$_{50}$/0.1 mL swab) of duck cloacal and OP samples post challenge. ... 98

Figure 3.7 Percentage of cloacal (A) and OP (B) duck swabs tested that were RRT-PCR C$_T$<40 and positive by ECE virus isolation by DPI, and median infectivity titres with error bars (AD). ... 99

Figure 3.8 Box plot of infectivity titre (EID$_{50}$/0.1 mL swab) of gull (A) and turnstone (B) OP samples post challenge, and turnstone RTA4 (shown at 10 DPI). 101

Figure 3.9 Percentage of OP swabs tested that were RRT-PCR C$_T$ <40 and positive by ECE virus isolation, and median infectivity titre from RRT-PCR positive swabs by DPI (AD values shown as error bars) in challenged gulls (A) and turnstones (B) with turnstone data at 10 DPI from one cloacal sample. .. 102

Figure 4.1 Percentage of trial birds from Table 4.1 positive by RRT-PCR and by VI, with median C$_T$ value of RRT-PCR positive results (C$_T$ <40) and error bars (AD) in (A) cloacal swabs to 10 DPI and (B) OP swabs to 4 DPI. .. 122

Figure 4.2 Assessment of various thresholds of the NP c-ELISA % inhibition in surveillance sera showing the percentage of wild birds with HI titre ≥8 to at least one HA serotype as a proportion of the total number of significant HI results (error bars from 95% CI)... 130
Figure 4.3 Two graph ROC analysis of the NP c-ELISA results for “infected” and “uninfected” groups based on HI results in surveillance birds. .. 132

Figure 4.4 Percentage of infected challenge birds with HI titre ≥8 (read from the y-axis on the left side) and median infectivity titre in swab material (read from the y-axis on the right side), by species, by DPI. ... 133

Figure 5.1 Map showing movement pathways and coastal arrival locations for shorebirds migrating on the EAAF (source: Wetlands International 2009). 155

Figure 5.2 Serological and virological sampling data for northern Australia from 1992-2009. .. 157

Figure 5.3 Individual species NP c-ELISA seroprevalence by family: (A) Scolopacidae, (B) Charadriidae, Haematopodidae and Recurvirostridae, and (C) Laridae and Sternidae, with mean c-ELISA % inhibition and error bars (95% CI and SE respectively). Data are not shown where n <10. ... 165

Figure 5.4 Temporal NP c-ELISA seroprevalence for years where the sample size was ≥198 (error bars from 95% CI). ... 169

Figure 5.5 The number of HA subtypes from HI testing of mostly NP c-ELISA positive birds in Table 5.6 as a proportion of the total test population with error bars (95% CI). .. 175

Figure 6.1 The annual sample numbers of northern Australia waterfowl from 2004 (excludes prior sample years where n was <100 birds). .. 194

Figure 6.2 NP c-ELISA seroprevalence and mean % inhibition values by species with error bars (95% CI and SE respectively), excluding data where n <10. 198

Figure 6.3 Spatiotemporal NP c-ELISA seroprevalence in the waterfowl from Kununurra and Atherton with error bars (95% CI). ... 199

Figure 6.4 Prevalence of HI reactions to HA subtypes in waterfowl sera expressed as a proportion of the total population screen tested by c-ELISA (assuming all NP c-ELISA negative sera were also HI negative) with error bars (95% CI). 205

Figure 6.5 Prevalence of H5 and H6 subtype HI reactions (read from y-axis on the left side) compared to the NP c-ELISA seroprevalence (read from y-axis on the right side) in Kununurra waterfowl from 2004 to 2009. .. 205

Figure 7.1 Map showing the nine major migratory waterbird flyways of the world http://www.eaaflyway.net/images/flyways.html ... 225

Figure 7.2 Release (A), and exposure and consequence (B) scenario trees outlining the risk pathway for HPAI H5N1 to northern Australia by migratory shorebirds........... 234

Figure 7.3 Map locations of H5N1 disease outbreaks in wild birds across Asia, January 2004 to July 2011, from (USGS 2011a) and WAHID Interface (23 June 2011) at: http://web.oie.int/wahis/public.php?page=home 247