ENVIRONMENTAL IMPACTS OF GREYWATER USE FOR IRRIGATION ON HOME GARDENS

By

Radin Maya Saphira bte Radin Mohamed

BSc (Industrial chemistry)
MEng Environmental

This thesis is presented for the degree of Doctor of Philosophy,

Murdoch University, Western Australia

Sept 2011
DECLARATION

I declare that this thesis is my own account of my research and contains as its main content, which has not previously submitted for a degree at any tertiary education institution.

Radin Maya Saphira bte Radin Mohamed
LIST OF PUBLICATIONS

Paper presented at conferences:

Journals:

Socrates said unexamined life is not worth living. But the over examined life makes you wish you were dead. This was one of the reasons why I undertook the decision years ago. Which I believe, given the alternative, I’d rather be living.

I’m most grateful to many people who assisted me in the completion of this thesis.

To sponsors, I wish to thank the Ministry of Higher Education, Malaysia and University of Tun Hussein Onn Malaysia for giving me a chance to obtain my higher degree.

To my supervisors, Dr. Martin Anda (principal), Dr. Stewart Dallas and Prof. Goen Ho for their consistent motivation, support, trust and guidance which has helped me learn and pass through the challenges along the way.

To the Environmental Science School staff; Head of School, Assoc. Prof. John Bailey, administration staff; especially to Kelly Boxal and Frank Salleo, technicians; Phil Good, Steven Goynich, Steve Munro and Collin Ferguson who assisted me whenever I needed help.

To all my colleagues and associates at the Environmental Technology Centre, especially Le Ngoc Thu, Sergio Domingos, Robby Cocks, John Hunt, Jaya Nair, Kuruvilla Mathew, Beth Strang, David Goodfield and Sven Wildermuth for their team spirit. Special thanks to Amit Gross, a fellow researcher from the Ben Gurion University of the Negev, Israel who came at the final stage of my research, gave me a chance to improve my analysis, experimental set-up and shared valuable experience throughout the final project. I’m grateful to have learnt a lot of technical aspects, both onsite and in the laboratory from him.

To my landlord, Leslie and Hermin Bloxham who have had to bear their house turning into a laboratory and for their ongoing support and motivation.

To Wan Sofiah, Ramisah, Laili Mukaromah, Sven Wildermuth, Ahmed Ammari, Mel Mataki and many others (too many names to list)... I thank you all for supporting, assisting and encouraging me through the difficult times and for sharing the upside down PhD world. To
Nurul Ain, Sariati, Zurida, Yusni, Saidatul, Adnawani etc who dragged me away from the computer during weekend for picnicking and gathering, let me be able to see the beautiful skies. I thank my sweet friend Xian Fang Lou for extending a hand of support whenever I had a problem, for encouraging me and boosting my morale, and for reading and editing my thesis in spite of being busy with her PhD. You guys are wonderful and it means a lot.

To peer and proof reviewers, Bill Scott, Amit Gross, Ceri Evans, John Forrest (TAFE Challenger), Lily Ho, Stan Sochacki, Ziad al-Merkawi and Ben Cole for their tireless help in proof reading and editing the thesis to wipe out inconsistencies and grammatical errors.

To my previous and present officemates; Sebastian, Robert, Supot, Timmy, Bill, Sven, Lily, Stan and Collin who saw me through the whole process.

To my family (mother, cousins), and neighbourhood friends for their assistance on domestic matters during the earlier year.

To my precious children for their biggest understanding while their mother was “preoccupied” the majority of their childhood. It was a great experience to carrying the entire task (being a mom and PhD student as well) that somehow I couldn’t imagine. I only hope that someday they will benefit from this journey.

To my soulmate (husband), who sacrificed being apart for so many years, which I dearly regret. Your daily calls spiritually made me move on. Your patience makes me strong. Thank you for helping me get used to the dark. Once my eyes adjusted, I could see lots of possibilities. I cannot put into words how much your support means to me.

And most importantly, God for keeping us going!
ABSTRACT

This study focuses on the feasibility and environmental impacts of using raw domestic greywater from laundry and bathroom after only primary treatment, e.g. coarse filtration for irrigating lawns and gardens. The use of greywater for landscape irrigation requires careful management, especially in regions with sandy soils and shallow groundwater levels. There is the possibility that excessive nutrients and other contaminants will leach into surrounding water bodies. This has been a major concern with greywater use in ecologically sensitive environments, such as on the Swan Coastal Plain of Perth, Western Australia. Proper management is essential to ensure environmental risks from greywater irrigation are avoided.

The main purpose of the first stage of the study was to develop a new zero-tension lysimeter (ZTL) as a leachate sampler in a greywater irrigation plot. The new ZTLs were tested to compare the quantity and quality of leachate collected with that from the conventional pan lysimeter, in a pilot-scale study. The results indicate that the new lysimeter designated as ZTL (N1), was effective at collecting leachate and was suitable to install at household sites. The lysimeter ZTL (N1) design offers significantly improved performance, was cost-effective and required limited effort to install using an auger, which also minimizes soil disturbance. Since the lysimeter was practical and inexpensive it was established to facilitate the monitoring of greywater irrigation.

The second stage of the study was to monitor the use of primarily treated greywater by using diversion system from bathrooms and laundries at four Perth houses: two houses at the Bridgewater Lifestyle Village (BWLV), one each at White Gum Valley and Hamilton Hill. Each house had different characteristics: different house types, occupants, cleaning product preferences and presence, or not, of household pets. Water use activities, soil and vegetation were monitored and were sampled for physical and chemical characteristics. Groundwater samples at the BWLV site were also collected. This site has 389 houses with a greywater
A diversion system installed in each, is located close to the Peel-Harvey estuary and a wetland, and has a shallow aquifer. Monitoring results showed that the groundwater samples were within the ANZECC guidelines. Greywater quality showed high variability depending on water consumption by washing machines, use of detergents and fabric softeners, as well as individual lifestyles. Land activities such as fertilizers and pets were expected to contribute to high amounts of nutrients in the leachate. Mulching and fertilizer used by householders in conjunction with greywater irrigation improved the function of soil and condition of plants.

The third stage of the study was to determine the effects of raw laundry and bathtub greywater irrigation on the growth of couch grass (*Cynodon dactylon* L.) sod on a sandy soil in a 24-week study, from October 2009 to March 2010. In Perth, the use of greywater is significant during these months as rainfall is at its lowest and irrigation demand at its highest. Couch grass is a common lawn used in Western Australia with excellent drought tolerance, water efficiency and relatively low maintenance requirements. Three irrigation treatments were applied using a modified aquarium tank: (i) 100% scheme water as a control (TW), (ii) untreated full cycle laundry water (LGW), (iii) untreated bathtub water (BGW). Salts and nutrients Na, Cl, P, Ca, Mg, K, B, Zn and Al were chosen for measuring because they are dominant constituents in greywater and have a beneficial role in turf grass growth. Their dynamics and mass balance were assessed by measuring the irrigation (input) and leachate (output) volumes and concentrations of element concentration in both input and output water of the tank. Irrigation using LGW and BGW in sand resulted significant leaching of some Mg and Al beyond the 30cm root-zone depth. The mass balance showed an increased amount of stored Na, Cl, P and K in the soil at the end of the study. The accumulation of salts and nutrients in the soil has resulted in the infiltration rate, K, gradually declining.

The final stage of the study was to investigate further the significant reduction of K in the tank test. Another soil hydraulic property, capillary rise (P_c), was also measured. The soil samples were collected from greywater-irrigated plots at the case studies and the tank test, as mentioned previously. In addition, the study
examined the changes in soil properties from the use of an anionic surfactant, *linear alkylbenzene sulphonate* (LAS) which is known to be the main ingredient in detergent formulation. A commercially available surfactant-based wetting agent to alleviate water repellency in household gardens was also considered. Irrigation with raw laundry and bathtub greywater, application of LAS and a wetting agent made a significant reduction on infiltration rate, K, and on P_c. At the case study sites, the changes were difficult to quantify owing to various land activities that influenced the result.

The results of the extensive experimental on-site program indicated that the use of primarily treated greywater is a viable option to conserve water for irrigation during times of drought and water restrictions. The sustainable use of raw greywater would vary with specific site conditions and householder practices. Soil and plant quality parameters are significantly affected after continuous irrigation with greywater. This is mainly determined by the management regime of greywater irrigation and its composition. In addition, continuous irrigation with greywater may lead to accumulation of salts, plant nutrients and some nutrients beyond plant tolerance levels. Therefore, these concerns should be essential components of any management plan for greywater irrigation. On the other hand, plant growth, soil fertility and productivity can be enhanced with properly managed greywater irrigation, through increasing levels of plant nutrients and soil organic matter. It is suggested that proper management of greywater irrigation with periodic monitoring of soil fertility and quality parameters are required to ensure successful and safe long-term use of greywater for irrigation. The adequate assessment of any environmental risks will require further research.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANZECC</td>
<td>Australian and New Zealand Environment Conservation Council</td>
</tr>
<tr>
<td>ARMCANZ</td>
<td>Agriculture and Resource Management Council of Australia and New Zealand</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>B</td>
<td>Boron</td>
</tr>
<tr>
<td>BGW</td>
<td>Bathtub greywater</td>
</tr>
<tr>
<td>BOM</td>
<td>Bureau of Meteorology, Australia</td>
</tr>
<tr>
<td>Ca, Ca$^{2+}$</td>
<td>Calcium, calcium ion</td>
</tr>
<tr>
<td>CA</td>
<td>California</td>
</tr>
<tr>
<td>Cl, Cl$^{-}$</td>
<td>Chloride, chloride ion</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical Oxygen Demand</td>
</tr>
<tr>
<td>DOH</td>
<td>Department of Health</td>
</tr>
<tr>
<td>EC</td>
<td>Electrical conductivity</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>ETC</td>
<td>Environmental Technology Centre</td>
</tr>
<tr>
<td>Fe</td>
<td>Ferum or iron</td>
</tr>
<tr>
<td>GDD</td>
<td>Greywater Diversion Devices</td>
</tr>
<tr>
<td>GTS</td>
<td>Greywater Treatment System</td>
</tr>
<tr>
<td>ICP-AES</td>
<td>Inductively coupled plasma-atomic emission spectroscopy</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>K</td>
<td>Infiltration rate</td>
</tr>
<tr>
<td>LGW</td>
<td>Laundry greywater</td>
</tr>
<tr>
<td>N</td>
<td>Nitrogen</td>
</tr>
</tbody>
</table>
Na, Na⁺ Sodium, sodium ion
NATA National Association of Testing Authorities, Australia
NH₄⁺, NH₄⁺ Ammonium, ammonium ion
NO₃⁻, NO₃⁻ Nitrate, nitrate ion
NO₂⁻, NO₂⁻ Nitrite, nitrite ion
PO₄⁻, PO₄³⁻ Phosphate, phosphate ion
SAR Sodium Adsorption Ratio
SE Standard Error
SO₄²⁻ Sulphate ion
TDS Total Dissolved Solids
TL Tension Lysimeter
TN Total Nitrogen
TSS Total Suspended Solids
TW Tap water from scheme water supply
UAE United Arab Emirates
US United States of America
USEPA United States Environmental Protection Agency
UK United Kingdom
WA Western Australia
WHO World Health Organisation
ZTL Zero-tension lysimeter
ZTLP Zero-tension lysimeter pan
ZTL (N1) Zero-tension lysimeter (new 1)
ZTL (N2) Zero-tension lysimeter (new 2)
TABLE OF CONTENTS

DECLARATION..ii

LIST OF PUBLICATIONS..iii

ACKNOWLEDGEMENTS..iv

ABSTRACT..vi

ABBREVIATIONS..ix

TABLE OF CONTENTS..xi

LIST OF FIGURES...xiv

LIST OF TABLES..xvii

CHAPTER 1: INTRODUCTION

1.1 THE NEED FOR GREYWATER REUSE...1

1.2 CHALLENGES OF SUSTAINABLE IRRIGATION WITH GREYWATER....3

1.3 SCOPE AND AIMS OF THE RESEARCH...4

1.4 THESIS STRUCTURE...5

CHAPTER 2: LITERATURE REVIEW

2.1 INTRODUCTION..7

2.2 WATER SCARCITY..9

2.3 GREYWATER AND ITS REUSE POTENTIAL..10

2.4 GREYWATER REUSE FOR IRRIGATION..11

2.7 GREYWATER REUSE SYSTEMS...17

2.8 EFFECTS OF GREYWATER IRRIGATION...19

2.8.1 Soil ..19

2.8.2 Plants ...23

2.8.3 Groundwater...25

2.9 GUIDELINES AND REGULATIONS OF ENVIRONMENTAL RISKS ON
THE REUSE OF GREYWATER..27

2.10 GREYWATER AND MONITORING WORKS USING LYSIMETER........32

2.11 CONCLUSION...34
CHAPTER 3: AN INEXPENSIVE, ZERO-TENSION LYSIMETER FOR USE IN GREYWATER IRRIGATION MONITORING

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>INTRODUCTION</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>MATERIALS AND METHOD</td>
<td>37</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Site description</td>
<td>37</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Zero-Tension Lysimeter (ZTL) design</td>
<td>38</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Installation of Zero-Tension Lysimeter (ZTL)</td>
<td>40</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Leachate sampling and analysis</td>
<td>41</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Leachate volumes using the Water Balance Method</td>
<td>43</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Statistical analysis</td>
<td>44</td>
</tr>
<tr>
<td>3.3</td>
<td>RESULTS</td>
<td>45</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Distribution of leachate volumes</td>
<td>45</td>
</tr>
<tr>
<td>3.3.2</td>
<td>ZTLs correlation coefficient analysis</td>
<td>48</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Collection efficiency of the ZTLs</td>
<td>50</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Leachate volumes to ZTLs location below the driplines</td>
<td>51</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Leachate chemistry</td>
<td>52</td>
</tr>
<tr>
<td>3.4</td>
<td>DISCUSSION</td>
<td>56</td>
</tr>
<tr>
<td>3.4.1</td>
<td>ZTLs volumes and collection efficiency</td>
<td>56</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Chemical composition of leachate</td>
<td>58</td>
</tr>
<tr>
<td>3.5</td>
<td>CONCLUSION</td>
<td>61</td>
</tr>
</tbody>
</table>

CHAPTER 4: GREYWATER REUSE FOR IRRIGATION AT FOUR HOUSEHOLD SITES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>INTRODUCTION</td>
<td>62</td>
</tr>
<tr>
<td>4.2</td>
<td>MATERIALS AND METHOD</td>
<td>63</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Selection of case studies</td>
<td>63</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Greywater system</td>
<td>68</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Irrigation system</td>
<td>72</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Sampling</td>
<td>73</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Analysis of samples</td>
<td>77</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Statistical analysis</td>
<td>77</td>
</tr>
<tr>
<td>4.3</td>
<td>RESULTS</td>
<td>78</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Greywater effluent</td>
<td>78</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Leachate</td>
<td>81</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Groundwater monitoring at BWLV, Erskine, Mandurah</td>
<td>83</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Soil quality</td>
<td>86</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Plant quality</td>
<td>92</td>
</tr>
<tr>
<td>4.4</td>
<td>DISCUSSION</td>
<td>97</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Greywater characteristics</td>
<td>97</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Receiving soil</td>
<td>98</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Leachate</td>
<td>100</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Plant</td>
<td>101</td>
</tr>
<tr>
<td>4.5</td>
<td>CONCLUSION</td>
<td>102</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Chapter 2

Figure 2.1. Topped mulch when using greywater (purple driplines) .. 13
Figure 2.2. The sequence of the household greywater reuse system in WA 19

Chapter 3

Figure 3.1. Block experimental set-up .. 37
Figure 3.2. Schematic diagram of the lysimeters: (a) ZTL (N1) and (b) ZTL (N2) with different tubing location; compared with (c) ZTLP (or pan lysimeter) .. 39
Figure 3.3. Photo of (a) ZTL (N2) and (b) ZTL (N1) .. 39
Figure 3.4: (a) Major soil excavation process in the zero-tension lysimeter pan (ZTLP) installation compared to; (b) zero-tension lysimeter new (ZTLN) installation using a corer. .. 40
Figure 3.5. Installation procedure for the ZTLNs: (a) a specially designed corer (internal diameter 100 mm x length 300 mm) was used to extract the soil to produce the primary access hole for the lysimeter; (b) a second hole was drilled into the base (internal diameter 70 mm x length 0.5:Dm) to form a primary access tunnel; (c) the ZTLN was inserted into the secondary hole and (d) the primary hole was carefully filled with intact soil from the specially designed corer, to minimize soil profile disturbance as much as possible 41
Figure 3.6. Tension lysimeter installed in the block study for leachate 43
Figure 3.7. The scattered plot of ZTLs volumes in the two blocks 45
Figure 3.8. Variation of the volumes received from ZTLP and ZTL (N1) 47
Figure 3.9. Lysimeters located in the driplines affected the leachate capture 52
Figure 3.10. Variability of leachate chemistry ... 55
Figure 3.11. Leachate chemistry between ZTLs .. 56

Chapter 4

Figure 4.1. Map of selected case studies in Perth, WA (accessed from the googleearth.com on 30 March 2009) ... 64
Figure 4.2. Monthly rainfall in Dec 2008 to Nov 2009 at each house observed from the nearest weather station ... 65
Figure 4.3. House A schematic diagram with lysimeter sampler location 69
Figure 4.4. House B schematic diagram with lysimeter sampler location 69
Figure 4.5. House C schematic diagram with lysimeter sampler location 70
Figure 4.6. House D schematic diagram with lysimeter sampler location 71
Figure 4.7. A lysimeter sampler; (a) schematic diagram (b) placed under the greywater driplines at case study. .. 74
Figure 4.8. Groundwater sampling locations for the BWLV site (Schematic adapted from the Technical Report BWLV for Nutrient and Management Plan, 2004). 85
Figure 4.9. Soil of nitrate (NO$_3^-$) and ammonium (NH$_4^+$) before and after irrigated with greywater ... 88
Figure 4.10. Soil of total nitrogen (TN), phosphorus (P) and boron (B) before................. 89
Figure 4.11. Plant tissue content of phosphorus (P) and nitrate (NO$_3^-$) before and after irrigated with greywater ... 93
Figure 4.12. Plant tissue content of boron (B) and sodium (Na) before and after irrigated with greywater ... 94
Chapter 5

Figure 5.1. Schematic diagram of tank experiment .. 107
Figure 5.2. The leaching outflow and study site monthly mean air temperature (°C) recorded at Perth Metro Weather Station .. 115
Figure 5.3. First leaching of TW in dry soil ... 116
Figure 5.4. First leaching of LGW in damp soil (left) and dry soil (right) 116
Figure 5.5. First leaching of BGW in damp soil (left) and dry soil (right) 117
Figure 5.6. The overall mean EC and pH of inflow (irrigation) and outflow (leachate) 118
Figure 5.7. Salt and macronutrients mass balance of irrigation water (inflow) and leachate (outflow) ... 119
Figure 5.8. Micronutrients mass balance of irrigation water (inflow) and leachate (outflow) .. 120
Figure 5.9. Soil quality changes after 30, 90 and 180 days irrigated with 122
Figure 5.10. Turf grass quality after 30 and 180 days of irrigation 125
Figure 5.11. Height of turf grass initially and after being irrigated with LGW, BGW and TW; mean of three replicates (± S.E.) ... 126
Figure 5.12. Turf grass planted on 3 Oct 2009 ... 128
Figure 5.13. The development and growth of turf grass ... 129

Chapter 6

Figure 6.1. Surfactant’s role in washing ... 142
Figure 6.2. The theoretical mode of action of wetting agent to alleviate water repellent soils ... 144
Figure 6.3. Illustration of the double ring infiltrometer experimental set-up 148
Figure 6.4. The infiltration rate, K measurement set up with the double ring infiltrometer during the testing of soil in: (a) tank test (b) case study ... 148
Figure 6.5. Arrangement of the pot test .. 150
Figure 6.6. Soil column preparation for the capillary rise, Pc, experiment 151
Figure 6.7. Illustration of the capillary rise experimental set-up 152
Figure 6.8. Capillary rise experimental set-up in the laboratory ... 153
Figure 6.9. Infiltration rate, K, of LGW, BGW and TW from the tank test. Results are based on 3 replicates .. 154
Figure 6.10. Infiltration rate, K, with different irrigation practices at case studies. Results are based on 3 replicates .. 155
Figure 6.11. Infiltration rate, K, of five commercial wetting agent solutions and scheme water into partly water repellent soil. Results are based on 3 replicates 156
Figure 6.12. Relative change in infiltration rate, K, of scheme water over time after application of wetting agents (time 0). Results are based on 3 replicates. 157
Figure 6.13. Relative change in the initial, K, of scheme water over time after application of wetting agents (time 0). Results are based on 3 replicates. 158
Figure 6.14. Capillary rise of tank test soils in TW, LGW and BGW irrigation (a) soil after oven dried (b) burnt soil. .. 159
Figure 6.15. Capillary rise of tank test soils in Houses A, C and D in soil irrigated with freshwater, greywater and native soil after (a) oven dried (b) burnt. 161
Figure 6.16. Effect of anionic surfactant (Linear Alkyl Benzene Sulfonate) and commercial wetting agent pre-coated soil on capillary rise as compared to the capillary rise in native soil with and without the organic fraction ... 162
Figure 6.17. Effects of commercial wetting agent on capillary rise in sandy soil. a) Capillary rise of wetting agent solutions in dry (105 °C) native soil packed in columns, b) Capillary rise of water in the soil (from a) after it was re-dried in the columns, c) Capillary rise of
wetting agent solutions in soil that was packed in columns, d) Capillary rise of water in the sand (from c) after it was re-dried in the columns…………………………………………………………………………………….. 163

LIST OF TABLES

Chapter 2

Table 2.1. Typical ingredients in laundry detergents (Roesner, Qian et al., 2006)............ 14
Table 2.2: Typical composition of greywater compared with raw sewage (DOH, 2005) 16

Chapter 3

Table 3.1. Result of soil analysis .. 38
Table 3.2. Percentage of mean volumes (mL) of leachate between lysimeters 48
Table 3.3. Pearson’s correlation coefficient for ZTLs .. 48
Table 3.4. Percentage of deviation from calculated volume (using the water balance method) of measured leachate volumes among ZTLs .. 51
Table 3.5. Efficiency of percentage leachate capture by ZTLs 52
Table 3.6. Mean composition of leachate (± S.E.) collected with the tension lysimeter (TL) and zero-tension lysimeters (ZTLs). Results are based on three replicates. 53
Table 3.7. Summary of mean (± S.E.) of scheme water (TW) used for irrigation and leachate collected between three types of ZTLs, averaged from the 6 months of sampling. .. 54

Chapter 4

Table 4.1. Selected plant species for Houses A and B in Bridgewater Lifestyle Village (BWLV) homes gardens and evapo-transpiration trench system (ETTs) 66
Table 4.2. Summary of case studies information ... 67
Table 4.3. Nutrient content in typical organic mulch applied in the household gardening in Perth (Forrest, 2011) .. 72
Table 4.4. Soil and receiving environment vulnerability categories 76
Table 4.5. Range of physical and chemical greywater quality from case studies effluents compared to value in literature review and recommended limit for irrigation 79
Table 4.6. Physical and chemical properties of scheme water at case studies collected from the exterior tap water. Samples were based on six replicates; mean (± S.E.) 80
Table 4.7. Nutrient in leachate from the greywater irrigated area at case studies. Samples were collected monthly during the monitoring period; mean (± S.E.) mg/L 82
Table 4.8. Mean ratio of input (greywater irrigation) and output (leachate) nutrients leached during the monitoring work with lysimeter .. 83
Table 4.9. Groundwater physical and chemical analysis .. 84
Table 4.10. Mean (± S.E.) of soils before and after irrigating with greywater in case studies. Soil samples were taken in October 2008 and April 2009. Plots were irrigated with greywater since the system operated in October 2008 (House A, B, D) and since July 2007 for House C. ... 90
Table 4.11. Mean (± S.E.) of control soils. Soil samples were taken in October 2008 and April 2009: ... 91
Table 4.12. Mean (± S.E.) of plants before and after irrigating with greywater in case studies. Plant samples were taken in October 2008 and April 2009. Plots were irrigated with greywater since the system operated in October 2008 (House A, B, D) and since July 2007 for House C. .. 95
Table 4. Mean (± S.E.) of plants in control soils at case studies. Plant samples were taken in October 2008 and April 2009.

Chapter 5

Table 5.1. Soil physical characteristics used in the tank experiment. Soil samples (n = 3) were taken from 0-15cm depth.

Table 5.2. Mean (± S.E.) of initial status of the selected salts and nutrients in the soil and turf, n = 3.

Table 5.3. Monthly (± S.D.) temperature, total evapotranspiration (ET) and total irrigation amount based on replacement of ET during duration of the experiments, October 2009 to March 2010.

Table 5.4. Mean (± S.E.) values (n = 9) of irrigation water compared with range or maximum limit for irrigation. Samples were taken every 60 days. Concentrations are in mg/L unless stated otherwise.

Table 5.5. Soil pH and EC before (initially) and after 30, 90 and 180 days of TW, LGW and BGW irrigation, n = 9 with (± S.E.).

Table 5.6. Mean (± S.E.) of soil salts and nutrients after 30, 90 and 180 days of irrigation with TW, LGW and BGW.

Table 5.7. Mean (± S.E.) of turf grass tissue salt and nutrient after 30 and 180 days of being irrigated with TW, LGW and BGW compared with common nutrient sufficiency range and its impact on plant growth.

Table 5.8. Pearson's product moment correlation and student's t-test of.

Table 5.9. Total mass balance (g) of the nine elements (salt and nutrients) in couch turf grass under TW, LGW and BGW irrigation in the 24-weeks study period.

Chapter 6

Table 6.1. Chemical and physical characteristics of surfactants (LAS) and wetting agents used in the study.

Table 6.2. Physical and textural characteristics of sandy soil from around Perth, WA, which was used in the pot test study.

Table 6.3. A summary of an average initial and changes of infiltration rate, K (± S.E.) of five wetting agent solutions and scheme water and the percent change in infiltration over time. Letters a, b, c, indicate statistical differences (p < 0.05) between treatments on a certain day.