2012 WA Agribusiness Crop Updates

28 – 29 February, 2012

Pan Pacific Hotel
Disclaimer

1. The information, representations and statements contained in this publication are provided for general scientific information purposes only.

2. The State of Western Australia, the Minister for Agriculture and Food the Director General of the Department of Agriculture and Food, the Grains Research and Development Corporation and their respective officers, employees and agents:
 a) do not make any representation or warranty as to the accuracy reliability completeness or currency of the information, representations or statements in this publication (including but not limited to information which has been provided by third parties); and
 b) shall not be liable, in negligence or otherwise, to a person for any loss liability or damage arising out of an act or failure to act by any person in using or relying on any information, representation or statements contained in this publication.

3. The State of Western Australia, the Minister for Agriculture and Food the Director General of the Department of Agriculture and Food, the Grains Research and Development Corporation and their respective officers, employees and agents:
 a) make no representations or warranty that any of the products specified in this publication (‘Specified Products’) are registered pursuant to the Agricultural and Veterinary Chemicals Code Act 1994 (WA).

4. a) The State of Western Australia, the Minister for Agriculture and Food the Director General of the Department of Agriculture and Food, the Grains Research and Development Corporation and their respective officers employee and agents do not endorse or recommend any Specified Product or any manufacturer of a Specified Product. Brand, trade and proprietary names have been be used solely for the purpose of assisting users of this publication to identify products.
 b) Products that are not Specified Products (‘Alternative Products’) may perform as well as or better than Specified Products.

5. Users of any chemical product should always read the label on the product before use and should follow the directions specified on the label.

Copyright © Western Australian Agriculture Authority, 2012
Present and future management options to control Rhizoctonia disease in wheat

Daniel Hüberli, Shahajahan Miyan, Miriam Connor and William MacLeod, Crop Protection, Department of Agriculture and Food, WA, South Perth

KEY MESSAGES

- When sowing to wheat or another cereal in a paddock with a previous history of Rhizoctonia bare-patch use a cultivation below the seed (~10 cm) and a registered fungicide.
- In the near future, new in-furrow fungicide options that improve the control of Rhizoctonia disease in wheat will become available to WA farmers.

AIMS

Rhizoctonia bare-patch (*R. solani* AG8) is a major problem across WA’s cereal growing regions and is estimated to reduce WA state-wide cereal yields by 1% to 5% annually. Australia has one registered fungicide for use on seed which claims to suppress rather than control the disease. Current management practices to minimise the impacts of Rhizoctonia bare-patch in WA are combinations of, cultivation with fungicide seed-dressing and adequate nutrition. Alternative fungicides and/or delivery methods (such as liquid injection) would provide greater flexibility for management of Rhizoctonia bare-patch.

Our aim was to determine the efficacy of current management options to control *R. solani* and the future options which will become available during the next few years.

METHOD

A large field trial was conducted in 2010 (Experiment 1; present options) and a second in 2011 (Experiment 2; future options) in sites with confirmed Rhizoctonia disease problems. Both sites had visible patches in the previous years and the pathogen was confirmed by PreDicta-B® soil test.

2010 Experiment - Present management options

The trial was sown with untreated wheat seed or seed that was treated with Dividend®, using knife-points tilling to a depth of the seed or 10 cm below the seed. Further details of the trial are given below.

Trial details:

<table>
<thead>
<tr>
<th>Property</th>
<th>Wickepin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot size and replication</td>
<td>40 x 1.5 m, 4 reps/treatment</td>
</tr>
<tr>
<td>Soil Type</td>
<td>Brown grey loamy sand</td>
</tr>
<tr>
<td>Sowing Date</td>
<td>18 June 2010</td>
</tr>
<tr>
<td>Wheat Crop Variety</td>
<td>Janz</td>
</tr>
<tr>
<td>Seeding rate</td>
<td>70 kg/ha (depth 3 cm)</td>
</tr>
<tr>
<td>Paddock rotation</td>
<td>Pasture 2009</td>
</tr>
<tr>
<td>Fertiliser (kg/ha)</td>
<td>DAP at 100 kg/ha</td>
</tr>
<tr>
<td>Growing Season Rainfall</td>
<td>60.75 mm</td>
</tr>
</tbody>
</table>

2011 Experiment - Future management options

The trial was sown with wheat seed treated with Product 1 or untreated wheat seed. Fungicide (Product 2) was injected as a liquid 3 cm below the untreated seed at three rates. Further details of the trial are given below.
RESULTS

2010 Experiment - Present management options

At anthesis, R. solani DNA levels in the soil (as measured by PreDicta-B®) were only slightly increased compared with the levels observed at sowing for the treatment including both Dividend® and cultivation below the seed while the inoculum levels were doubled in the Nil treatment (neither seed treatment not deep cultivation; Figure 1). Note that at sowing, DNA levels in the soil for each plot were in the medium to high risk categories for R. solani as defined by the PreDicta-B® test.

Final root weight at anthesis was higher in the treatments with Dividend® and cultivation below seed, compared to Nil. It is not known whether this result would have translated to a yield gain; no yield data was obtained due to drought in 2010.

![Figure 1. Rhizoctonia solani DNA soil levels at anthesis sampling compared with levels at sowing for plots with treatments of seed dressing with Dividend® (+/-) and cultivation 10 cm below seed (+/-). LSD = 110. No significant differences were found for the main treatments.](image)

2011 Experiment - Future management options

Small differences in disease scores on primary roots were observed at early tillering between untreated plots and plots with fungicide treatments. Product 2 at rates 2 and 3 mL/ha had the lowest disease on primary roots. At anthesis, no differences in disease scores on crown roots among the treated and untreated plots were evident. Product 2 at rate 3 had a significantly increased yield of 0.5 t/ha compared to the untreated Nil (Figure 2).
Figure 2. Mean wheat grain yield following seed and in-furrow fungicide treatments compared to the untreated Nil in a Rhizoctonia disease affected paddock. Lines above the bars are LSDs.

CONCLUSION

- These results support the current recommendation for management of Rhizoctonia bare-patch. When sowing to wheat or another cereal in a paddock with a high rhizoctonia risk, cultivate below the seed (~10 cm) at the time of sowing and use a registered fungicide (seed treatment with Dividend®). Dividend® is registered to suppress Rhizoctonia root rot, and in the absence of other practices will not provide adequate control of this disease.

- Some promising new fungicides may be registered in the near future for liquid injection in-furrow at the time of sowing. Further research on new fungicides for Rhizoctonia bare-patch control is planned for 2012 following the promising results during 2011 from this experiment and related experiments across southern Australia.

KEY WORDS

Rhizoctonia solani, root disease, soilborne pathogen, fungus.

ACKNOWLEDGMENTS

Funding was provided by GRDC under DAW00174 and a new project commenced in June 2010.

GRDC Project No.: DAW00174

Paper reviewed by: Sarah Collins, David Bowran