INFLUENCE OF THE FORM AND LEVEL
OF ORGANIC VERSUS INORGANIC COPPER AND ZINC
IN DIETS FOR GROWING AND FINISHING PIGS

Aracely Hernández
BSc (Animal Science)

Division of Health Sciences
School of Veterinary and Biomedical Sciences
Murdoch University

This thesis is presented for the degree of Master of Philosophy of
Murdoch University

June 2006
DECLARATION

I declare that this is my own account of my research and contains as its main content work, which has not previously been submitted for a degree at any tertiary education institution.

Aracely Hernández

June 2006
SUMMARY

Pharmacological levels of inorganic forms of copper (Cu) and zinc (Zn) are frequently used in diets for pigs to improve performance and control post-weaning colibacillosis. However, the use of such forms and levels causes mineral accumulation in the soil, and is a non-sustainable practice from an environmental perspective. Alternatively, organic complexes of copper (Cu) and zinc (Zn) have been proposed to be more available to pigs, and when included at lower levels than inorganic sources of these minerals have significantly reduced mineral excretion in faeces without compromising performance. However the effect of these organic minerals fed simultaneously at low levels of inclusion has not been well studied. The general hypothesis tested in this thesis was that concentrations of Cu and Zn in faecal material would be reduced when fed in an organic (Bioplex®) form without compromising performance or mineral homeostasis in growing/finishing pigs, in comparison to Cu and Zn fed in an inorganic (sulphate) form.

Two experiments were performed to test this hypothesis: Experiment 1 was designed as a 2x2 factorial arrangement of treatments, with two mineral forms (Bioplex® and Sulphate) and two inclusion levels (High and Low). The “low” levels aimed at providing 80 mg/kg of dietary Cu and Zn, and the “high” levels aimed at providing 160 mg/kg of dietary Cu and Zn. Experiment 2 was designed as a 3x2 factorial arrangement of treatments, with two mineral forms (Bioplex® and Sulphate) and three inclusion levels (Low, Medium and...
High). The “low” levels aimed at providing 25 mg/kg of Cu and 40 mg/kg of Zn, the “medium” levels aimed at providing 80 mg/kg of both Cu and Zn, and the “high” levels aimed at providing 160 mg/kg of both Cu and Zn in the diet. Unfortunately the Medium sulphate grower diet was contaminated with excess Zn while manufacturing, which led to the exclusion of this treatment from the study.

In Experiment 1, pigs fed LB (Low Bioplex®) or HS (High Sulphate) diets grew faster (P=0.014) and their carcasses were 3.5 kg heavier (P=0.020) than LS (Low Sulphate)- or HB (High Bioplex®)-fed pigs. Pigs fed LB or HS diets had lower (P=0.001) levels of Zn in plasma, a higher (P=0.029) concentration of Zn in the pancreas and a lower (P=0.020) concentration of Zn in bone than pigs fed LS or HB diets. The concentration of Cu in liver increased (P=0.017) with the concentration in the diet as did Cu and Zn levels in faeces (P<0.001) without any difference between mineral forms. Feed conversion ratio (FCR) tended to be improved (P=0.062) by the inclusion of Bioplex® in the diet. The inclusion of Bioplex® reduced (P=0.003) subcutaneous fat depth at the P2 site by 2.2 mm compared to the sulphate.

In Experiment 2, there was no difference (P>0.05) in growth rate between experimental diets, but again there was an overall improvement (P=0.012) in FCR when Bioplex® were included. Blood and tissue Cu and Zn concentrations were within normal physiological ranges in all treatments, supporting a reduction of Cu and Zn levels in the diet. Only Zn level in plasma during the growing phase and Cu and Zn concentration in tissues increased (P<0.001) with the addition in the diet. None of the biomarkers of
Cu or Zn status analysed in the pigs showed any difference between the inorganic and the Bioplex® forms. Copper and Zn concentrations in faecal material decreased (P<0.001) with their inclusion in the diet, and only in the finishing collection there was a further decrease of 10% in Zn faecal concentration when Bioplex® was included instead of the sulphate at similar low levels. Carcass and meat quality measures were independent of the Cu and Zn form or level, however a higher proportion of carcasses from LB-fed pigs had <14 mm subcutaneous fat depth at the P2 site. The inclusion of Bioplex® failed to have a significant effect on Cu excretion and its inclusion had an inconsistent effect on Zn excretion.

The overall findings from this thesis partially supported the hypothesis that the inclusion of Bioplex® would reduce the concentration of Cu and Zn in faeces compared to the inclusion of inorganic forms at similar inclusion levels. Nevertheless, total Cu and Zn levels in growing/finishing pig diets could be reduced from 160 mg/kg of both Cu and Zn to 30 mg/kg Cu and 60 mg/kg Zn, in either the sulphate or the Bioplex® form, without negatively affecting performance or mineral homeostasis in the pigs and significantly reducing Cu and Zn excretion (between 50 and 80%). The advantage of including Bioplex® instead of sulphates was in the improvement in FCR. Carcass and meat quality were independent of the form and level of dietary Cu and Zn.
TABLE OF CONTENTS

Declaration i
Summary ii
Table of contents v
Acknowledgements vi
Publications ix
General Introduction 1

CHAPTER 1: Literature Review 4

1.1 Introduction 4
1.2 Mineral requirements for pigs 5
1.3 Environmental concerns of copper and zinc supplementation 13
1.4 Minerals 18
1.5 Copper 24
1.6 Zinc 43
1.7 Studies examining copper and zinc fed in combination 70
1.8 Effect of copper supplementation on carcass and meat quality 72
1.9 Conclusions 73

CHAPTER 2: Influence of the form and inclusion level of copper and zinc on pig performance and faecal excretions 76

2.1 Introduction 76
2.2 Materials and methods 78
2.3 Statistical analysis 84
2.4 Results 84
2.5 Discussion 95
2.6 Conclusions 100

CHAPTER 3: Influence of the form and inclusion level of copper and zinc on pig performance, faecal excretions and carcass and meat quality 102

3.1 Introduction 102
3.2 Materials and methods 104
3.3 Statistical analysis 116
3.4 Results 117
3.5 Discussion 132
3.6 Conclusions 141

CHAPTER 4: General discussion 143

CHAPTER 5: References 153
ACKNOWLEDGEMENTS

As the grateful recipient of an industry partnership scholarship from Murdoch University and Alltech Biotechnology P/L, my sincere thanks to:

Alltech Biotechnology P/L, in particular Mr. Kim Turnley for funding this research project.

An excellent supervisor. Dr. John Pluske, for his guidance, extensive knowledge and support throughout this study. For his patience and care in reading and correcting my interminable drafts and still showing interest. His great sense of humour and enthusiasm even in the difficult times made my work much easier.

My co-supervisor, Dr. Bruce Mullan, for having opened doors for me in research in Australia and pushed me into this new field of mineral nutrition. His expertise in pig research provided much useful advice throughout the project.

Hugh Payne, for introducing me to the pork services group at the WA Department of Agriculture. Hugh initially gave me the opportunity of participating in one of his projects, and then was a vital reference in my successful application for my Master's scholarship. His friendship, support and assistance have been crucial into my initiation as a professional in Australia.
Dr. Jae Kim and Megan Trezona, for their excellent example of being high standards researchers. Their guidance and assistance at all times during this study is greatly appreciated.

Gerard Smith, Mark Dolling, Maeve Harvey, Mal McGrath and all the staff from the Animal Health Laboratories (WA Department of Agriculture) involved in the testing. Their flexibility and willingness to help me to meet deadlines in processing and analysing the numerous samples from my experiments was fantastic.

Mr. Ken Chong, for his useful and refreshing biochemistry lessons and his technical expertise in working with the Atomic Absorption Spectrophotometer.

All staff and postgraduate students from the School of Veterinary and Biomedical Sciences (Murdoch University) especially Malcolm Boyce, for his assistance and guidance in processing the bone samples.

Mr. Roland Nichols and Ms. Stacey McCullough, from the pork services team at the WA Department of Agriculture for their willing technical assistance throughout the experiments.

Mr. Bob Davis, Mr. Richard Seaward and other staff at the Medina Research Station for their technical support during the animal experiments.
And last but not least, I am indebted to all my family, whom I want to dedicate this thesis. The encouragement, love and pride of my parents in Colombia got me through this Masters. The immense love, support and optimism of my much loved husband made this journey easier. Thanks also to my in-laws especially to my recently deceased mother-in-law for her love and support.
PUBLICATIONS

