A review of chloride assisted copper sulfide leaching by oxygenated sulfuric acid and mechanistic considerations

G. Senanayake*

Parker Centre, Faculty of Minerals and Energy, Murdoch University, Perth, WA 6150, Australia

Abstract

The beneficial effect of chloride on sulfide leaching in sulfuric acid has been widely reported over the last 3 to 4 decades but the reasons have not been resolved. A review of recent literature shows that sulfide leaching is complex due to alternative reaction paths, competitive reactions and interim compounds formed on solid surfaces or in solutions. This study focuses on analysis of rate data for covellite leaching by oxygenated sulfuric acid in the presence of sodium chloride and comparison with the leaching data of chalcocite. The published results for initial copper leaching from covellite are analysed on the basis of a shrinking particle kinetic model to determine the apparent rate constants and reaction orders with respect to the concentrations of chloride, dissolved oxygen, and hydrogen ions. The first stage leaching of chalcocite to an intermediate CuS appears to be controlled by the mass transport of oxygen to the sulfide surface. A comparison has been made between the second stage leaching of chalcocite and the initial leaching of pure covellite to produce elemental sulfur by considering the effect of temperature on dissolved oxygen concentration and apparent rate constants. The Arrhenius plots gave comparable values for activation energy for covellite (101 kJ mol$^{-1}$) and second stage leaching of chalcocite (96 kJ mol$^{-1}$). A linear correlation of stability constants was used to determine equilibrium constants for the formation of CuS$_2$ and Cu(OH)Cl. The peak potentials of voltammograms of covellite are in reasonable agreement with the predicted potentials based on thermodynamics of a range of solid phases including CuS, CuS$_2$, Cu(OH)Cl, and Cu$_2$Cl(OH)$_3$. These observations are used to propose a reaction mechanism via mixed-ligand complex species.

Keywords: Covellite; Chalcocite; Sulfuric acid-oxygen leaching; Chloride effect; Kinetics; Mechanism.

*tel.: +61 8 93602833; fax: +61 8 93606343. Email: G.Senanayake@murdoch.edu.au
1. Introduction

The thermodynamic and kinetic basis for the rationalisation of the beneficial effect of chloride ions on sulfide leaching in non-sulfate systems such as strong brines has been widely reported (Peters, 1977; Winannd, 1991; Majima, 1995; Dutrizac, 1992; Muir, 2002; Flett, 2002; Senanayake and Muir, 1988, 2003). The HydroCopper™ process uses copper(II) chloride in strong brine (4.3 mol.dm\(^{-3}\) NaCl) to leach chalcopyrite concentrates at pH 1.5-2.5 and near boiling point of water (Lundstrom et al., 2005). New process flowsheets have been developed for chalcopyrite concentrates which include leaching in acidic calcium chloride solutions (~2 mol.dm\(^{-3}\) Cl\(^-\)) followed by conventional solvent extraction, stripping as sulfate, electrowinning, and iron removal as goethite or hematite (Liddicoat and Dreisinger, 2007).

The beneficial effect of low chloride addition for the leaching of copper-nickel sulfides in sulfate systems, previously reported by Subramanian and Ferrajuolo (1976), has also attracted renewed interest in atmospheric and pressure oxidation processes for a range of sulfides (Lu et al., 2000a,b; Deng et al., 2001; Berezowsky and Trytten, 2002; Peacy et al., 2003; Ferron et al., 2003; Kinnunen and Puhakka, 2004; McDonald and Muir, 2007a,b; Carneiro and Leao, 2007). For example, low chloride has a beneficial effect upon the acid-pressure leaching of copper and nickel from finely ground sulfide concentrates in the ACTIVOX process (Johnson and Streltsova, 1999). Low chloride also shows a beneficial role in PLASTOL, BHAS, CESL, and bioleaching processes (Ferron et al., 2003; Peacey et al., 2003; De Freyne et al., 2006; Watling, 2006).
Despite some detailed studies, reasons for the beneficial role of low chloride in sulfide leaching in sulfate systems remain unresolved (Cheng and Lawson, 1991a,b; Fisher et al., 1992; Kinnunen and Puhakka, 2004; Brown and Papangelakis, 2005; Carneiro and Leao, 2007). The general view is that during atmospheric leaching in the presence of sodium chloride in sulfuric acid, a porous and somewhat crystalline sulfur layer is formed on the sulfide surface, instead of a tight passivating sulfur layer which blocks the surface (Cheng and Lawson, 1991a, Muir and Ho, 2006; Carneiro and Leao, 2007). Elemental sulfur formed during the leaching of chalcopyrite with ferric chloride is also more porous than that formed with ferric sulfate, thus the leaching rate is an order of magnitude larger in the former (Majima et al., 1985).

Peters (1976a) reported that chalcopyrite, the primary and most important sulfide mineral of copper, is most difficult of the copper sulfides for hydrometallurgical treatment due to slow leaching kinetics. Recent reviews have highlighted the growing interest and conflicting views amongst researchers to understand the mechanistic details of leaching of chalcopyrite and secondary copper minerals in order to promote hydrometallurgical routes to extract copper (Dreisinger, 2006; Watling, 2006; Nicol, 2007; Klauber, 2008; Cordoba et al., 2008a). Chalcocite and covellite are two of the common copper-bearing minerals also formed as intermediate products during the leaching of chalcopyrite, copper matte/residue and copper-nickel sulfides; as shown by some of the reactions relevant to the present study listed in Table 1 (Peters, 1976a,b; Grizo et al., 1982; McDonalds and Langer, 1983; Cheng and Lawson, 1991a,b; Fisher et al., 1992; Grewal et al., 1992; Rademan et al., 1999; Muir and Ho, 2006; Deng et al., 2001; Provis et al., 2003; Nicol and Lazaro, 2003; Ruiz et al., 1998, 2007; Dreisinger, 2006; Herreros et al., 2006; Herreros and Vinals, 2007, Cordoba et al., 2008a,b). The dissolution of nickel sulfides via the displacement reactions such as reactions R6-R8 in
Table 1 (Rademan et al., 1999; Muir and Ho, 2006) is thermodynamically more favourable with large values of equilibrium constants, compared to the acid dissolution via reactions R4-R5. Moreover, the copper sulfide formed on the surface of millerite via reaction R6 is oxidized more rapidly than the base mineral (Miki and Nicol, 2008a). The oxidative dissolution of covellite by oxygen according to reaction R14 is also thermodynamically more favourable ($K_{298} = 10^{20}$), compared to non-oxidative acid dissolution according to reaction R9 ($K_{298} = 10^{-16}$). However, a range of stable or interim products can be predicted from the published thermodynamic data as noted in reactions R10-R18, all with favourable equilibrium constants. For example, the beneficial effect of chloride ions on the oxygenated-acid dissolution of copper from synthetic Cu$_2$S particles (Cheng and Lawson, 1991a) and acid dissolution of copper from synthetic CuO discs (Majima et al., 1980) has been rationalised by considering the formation of an interim adsorbed complex species of the formula: Cu(OH)(Cl)$_0$ (Senanayake, 2007b,c; 2008b).

The objectives of this investigation are: (i) to briefly review the complexity of leaching of copper sulfide ores/concentrates and mechanistic considerations, with special attention to the formation of interim compounds and competitive reactions in solid state or solution; (ii) to present a quantitative analysis of published data for the dissolution of similar sized covellite particles in the presence of sodium chloride (Cheng and Lawson, 1991b); and (iii) to highlight the importance of considering a surface reaction which involves mixed-ligand complexes of copper(II) with chloride and hydroxide ions. The aim is to rationalise the leaching behaviour of complex or mixed sulfides and the selection of conditions for accelerated leaching to produce sulfur and iron oxide products.
2. Complexity of mechanistic studies

Results based on the dissolution of sulphide particles in batch leaching experiments can be successfully used to investigate the rate controlling steps and mechanistic details of leaching of metals/minerals, especially if a comparison can be made between the rates based on flat surfaces and particles (Parker et al., 1981). However, a quantitative analysis of leaching kinetics of complex/mixed sulfides and nickel-copper mattes presents a number of challenges due to the complexity of the dissolution mechanism caused by a range of competing factors depending on mineralogy:

(i) alternative pathways of non-oxidative and/or oxidative leaching behaviour of different sulfides in acid media,

(ii) possible involvement of more than one redox couple as oxidants, such as Fe(III)/Fe(II), Cu(II)/Cu(I), O₂/H₂O, O₂/H₂O₂, and H₂O₂/H₂O,

(iii) formation of elemental sulfur, thiosulfate, sulfite, and sulfate as the interim/final oxidation product(s) of sulfide depending on the conditions,

(iv) difficulty in detection/characterisation of some solution/surface species or interim solid metal-sulfur phases,

(v) galvanic interactions caused by host minerals,

(vi) passivation or blockage of mineral surface by insoluble products,

(vii) beneficial or detrimental effects caused by background reagents.

Thus, the rate analysis based on individual sulfides allows a better understanding of the mechanism of surface reactions corresponding to dissolution, passivation, and de-passivation. Some examples follow.

Hirato et al. (1989) conducted a comparative study of chemical and electrochemical dissolution of copper from sintered CuS discs in acidified iron(III) chloride solutions.
The half order reaction with respect to Fe(III) concentration supported an
electrochemical mechanism for the dissolution. Nicol (2007) noted the importance of
considering the formation of sulfur during leaching via two different mechanisms for a
range of base metal sulfides. Firstly, direct oxidation by an oxidant such as Fe(III) leads
to the precipitation of sulfur on the mineral surface which may block the surface.
Secondly, non-oxidative acid dissolution of sulfide and indirect oxidation of hydrogen
sulfide by Fe(III) in solution leads to the precipitation of sulfur in the bulk. The rate of
dissolution of a sulfide mineral MS under acidic conditions can be estimated by
considering the equilibrium constants for the dissolution of MS to M(II) and H₂S. Here,
the rate controlling step is the rate of mass transfer of products such as M(II) and H₂S
away from surface, shifting the dissolution equilibrium in the forward direction with
time (Nicol and Lazaro, 2003; Nicol, 2007).

3. Effect of chloride on redox potentials and leach results

The possibility of involvement of more than one redox couple as oxidant(s) is
evident from Fig. 1a, where the potentials in oxygenated chloride systems follow the
descending order O₂/H₂O > Fe(III)/Fe(II) > Cu(II)/Cu(I). It is widely accepted that in
such systems with chloro-complexes the redox couples Cu(II)/Cu(I) (fast) or
Fe(III)/Fe(II) (slow) can oxidize the sulfide mineral or hydrogen sulfide, whilst the
oxidation of Cu(I) to Cu(II) by Fe(III) or dissolved oxygen reproduces the oxidant for
leaching (Parker et al., 1981; Nicol and Lazaro, 2003; Nicol, 2007; Miki and Nicol,
2008a). Lee et al. (2008) showed that in chloride medium the cathodic current for the
reduction of Cu(II) on a covellite surface is larger than that for the reduction of
dissolved oxygen, which results in faster dissolution of covellite in the presence of
copper(II). The rapid equilibration $\text{Cu(II)} + \text{Fe(II)} = \text{Cu(I)} + \text{Fe(III)}$ and the rapid oxidation of Cu(I) to Cu(II) by dissolved oxygen rationalises the catalytic effect of Cu(II) on the oxidation of Fe(II) (Miki and Nicol, 2008b).

The leaching of chalcocite/covellite by oxygen represented by the potential-pH diagram in Fig. 1b shows the oxidation of Cu$_2$S via CuS to produce elemental sulfur and CuCl$^+$, Cu$_2$Cl(OH)$_3$, or Cu(OH)$_2$/CuO depending on pH at 25 - 90°C. Fig. 1b does not show the thermodynamically unstable copper(I) species. It also does not consider the species such as Cu(OH)$_2^-$ and Cu(OH)$_{n-2}^-$ (n = 1-4) which are formed in solutions of high pH in the absence of other complexing media (Beverskog and Puidomenech, 1997). Nevertheless, the rapid oxidation of Cu(I) by dissolved oxygen produces CuCl$^+$ which is converted to Cu(SO$_4$)$_{0}^-$ in a predominantly sulfate system. Thus, the rationalisation of initial leaching of synthetic covellite by oxygen in iron-copper-free sulfate solutions would be less challenging than that of complex/mixed sulfides and would produce more comprehensive information on the role of chloride ions during the oxidation of covellite by oxygen in a sulfate background.

Fig. 2a shows the results of atmospheric leaching of copper from synthetic covellite by oxygen after 1 or 6 h (Cheng and Lawson, 1991b). The beneficial effect of chloride addition increases up to a concentration of 0.5 mol.dm$^{-3}$ NaCl where the copper extraction exceeds 80% after 6 h. According to Fig.2b, the copper leaching from synthetic chalcocite by oxygen is faster than that from covellite and reaches about 70% after 20 min (Cheng and Lawson, 1991a). The reaction order with respect to oxygen pressure was found to be 0.3 in the case of covellite in the presence of sodium chloride (Cheng and Lawson, 1991b). Although no physical significance for this order was given, the chloride ions were considered to promote the porosity of the sulfur layer formed on the covellite surface. However, the rationalisation of kinetics of chalcopyrite
poses more challenges with regard to the different reaction pathways that may produce different product layers responsible for slow leaching. Further studies are essential to compare, contrast, rationalise, and quantify the beneficial effect of chloride ions at a low concentration in a sulfate system.

4. Interim copper compounds

An understanding of the nature of interim compounds and competitive reactions at the surface of sulfide minerals or in solution plays an important role in successful elucidation of reaction mechanisms. Different types of interim compounds in the solid state have been considered in the mechanistic interpretation of copper sulfide leaching. They are sulfides, oxides, and chlorides or mixed chloro-hydroxides. In addition, copper(I) chlorides and a number of interim sulfur species in solution have also been reported.

4.1 Copper sulfide reactions

According to the potential-pH diagram of Cu-Fe-S-O-H₂O system the acid dissolution of CuFeS₂ takes place via intermediate sulfides such as Cu₅FeS₄, CuS, and Cu₂S (Peters, 1976b; Cordoba et al., 2008a). The reaction mechanisms of dissolution/passivation of secondary copper sulfides are relatively simple compared to that of chalcopyrite, but involves a number of interim species. Despite the ionic formula of Cu₂S₂ reported in the literature, it has been general practice, for simplicity, to use the formula CuS in chemical reactions to represent covellite (Fisher et al., 1992; Goh et al., 1996). Koch and McIntyre (1976) identified four intermediate phases: Cu₁.₉₅-₁.₉₁S,
Cu_{1.86-1.80}S, Cu_{1.68-1.65}S, and Cu_{1.40-1.36}S formed during electrochemical oxidation of covellite. These phases have been characterised by XRD and in-situ treatment of reflectance spectra. The oxidative dissolution of chalcocite by Fe(III), Cu(II), or oxygen is a multistage process which involves the initial fast oxidation via djurleite (Cu_{1.93}S) and digenite (Cu_{1.8}S) to blue-remaining covellite (Cu_{1.0-1.2}S): followed by the slow oxidation of Cu_{1.0-1.2}S (Sullivan, 1933; Mao and Peters, 1983; McDonald and Langer, 1983; Rademan et al., 1999, Cheng and Lawson, 1991a,b; Fisher et al., 1992). The non-oxidative acid decomposition of chalcopyrite produces chalcocite and covellite (Peters, 1976a,b), while the chemical metatheses of chalcopyrite in the presence of Cu(II) ions produces covellite and digenite (Sequeira et al., 2008).

Gerlach and Kuzeci (1983) conducted an electrochemical study of covellite and the results were rationalised on the basis of the formation of non-stoichiometric compounds, solid state diffusion of copper ions, and chemical dissolution. Bertram and Hillrichs (1981), and Hillrichs and Bertram (1983a,b) interpreted current-voltage curves for the anodic dissolution of synthetic/natural chalcocite and covellite discs in sulfuric acid solutions on the basis of the formation of metastable non-stoichiometric copper oxide or hydroxides. Based on cyclic voltammograms of CuS in sulfuric acid medium, Hillrichs and Bertram (1983a) considered the formation of intermediate oxides: CuS \rightarrow CuO_{0.67}(brown) \rightarrow CuO(black). Although the formation of these oxides stopped the total anodic decomposition of CuS, subsequent decomposition was evident from hindrance of Cu^{2+} flux by adherent sulfur on the anode surface at higher potentials. The addition of surface active anions such as Cl^-, ClO_4^-, and NO_3^- caused a further activation of CuS, indicating the importance of considering the role of anions. Miki and Nicol (2008a) reported linear sweep voltammograms of synthetic covellite in a mixed H_2SO_4/NaCl system which showed that the active dissolution at low potentials was followed by
passivation at about 0.6 V (SHE), whilst the anodic currents increased as the chloride concentration was increased from 0.2 mol.dm\(^{-3}\) to 2 mol.dm\(^{-3}\). The potential-pH diagram in Fig. 1b predicts the dissolution of CuS to form CuCl\(^+\) as well as the passivation due to the formation of insoluble S or Cu\(_2\)Cl(OH)\(_3\) at a potential close to 0.6 V at 25°C and 90°C.

4.2 Interim chlorides and mixed chloro-hydroxides

Fisher et al. (1992) considered the formation of copper(I) chloride and sulfate ions in the anodic half reaction of covellite. In oxygenated chloride solutions, the rate of copper extraction from a chalcocite concentrate (at 70 ºC) was seventy times faster than that in oxygenated sulfate systems. This was related to the formation of CuCl\(_3\)^{2-} in the anodic reaction for dissolution at both stages (Cu\(_2\)S and CuS). It was noted that dissolved oxygen was reduced to water via hydrogen peroxide but sulfide was converted to sulfate in the second stage (Fisher et al., 1992). However, equations R34 and R35 in Table 2 represent the reaction steps and widely reported anodic and cathodic half cell reactions. These reactions lead to the formation of Cu(II) ions and elemental sulfur as major products according to the thermodynamically favourable overall reaction R14 in Table 1.

Cheng and Lawson (1991b) noted that the formation of copper(I) chlorides such as CuCl\(_2\)^{-} in sulfuric acid media in the presence of sodium chloride is only possible at higher pulp densities, where there is inadequate mass transfer into the liquid phase, causing oxygen deficiency during leaching. Nicol (2007) proposed that the formation of Cu(I) and elemental sulfur in oxygenated chloride solutions is a result of the reaction between Cu(II) and hydrogen sulfide. Peters (1976b), McDonald and Langer (1983),
Cheng and Lawson (1991a), and Muir (2002) reported the formation of basic copper chloride Cu$_2$(OH)$_3$Cl, i.e. Cu(OH)(Cl).Cu(OH)$_2$. A potential-pH diagram which shows the predominant areas of CuCl$^+$ and Cu(OH)Cl species in solutions of pH < 7 was published by Sabba and Akretche (2006). The precipitation of Cu$_2$(OH)$_3$Cl has been observed at pH 4 in leaching experiments with covellite conducted with small monosized particles (13 µm) at low initial sulfuric acid concentrations of 5.10$^{-3}$ mol.dm$^{-3}$. The copper extraction increased in the first three hours, but then decreased as a result of an increase in pH to 4. Thus, Cheng and Lawson (1991b) proposed the overall reaction which involved the formation of CuCl$^+$ (R15) in acid solutions at low pH.

5. Competitive reactions and sulfur products

Base metal sulfide minerals are likely to undergo oxidation with oxygen by two different reaction pathways via elemental sulfur or thiosulfate depending on the conditions such as ammoniacal leaching, or acid leaching at atmospheric or elevated pressures (Muir et al., 1981; McDonald and Muir, 2007a). Rotating ring-disc electrochemical studies with nickel matte (Ho, 1996) and chalcopyrite (Lazaro and Nicol, 2006) have revealed the formation of interim sulfur-oxy species such as thiosulfate. Under some leaching conditions, NiS$_2$ and FeS$_2$ produce sulfate ions rather than elemental sulfur, while chloride ions appear to modify the passivating sulfur or inhibit the formation of NiS$_2$ layers (Muir and Ho, 2006).

Quantitative analysis of sulfur products of covellite oxidation by oxygen in mixed systems such as H$_2$SO$_4$-NaCl with a low concentration of NaCl revealed that the majority of sulfide was oxidized to elemental sulfur by oxygen (Cheng and Lawson, 1991b). A reaction scheme based on the formation of intermediates H$_2$S$_2$O$_2$ and
H₂SO₃ has been proposed to account for the quantitative yields of sulfate ions and elemental sulfur during sulfide leaching (Lotens and Wesker, 1987). The oxidation products of sulfides would depend upon whether: a “one-electron transfer” takes place by oxidants such as Cu(II) or Fe(III), or a “two-electron transfer” takes place by oxidants such as chlorine or hydrogen peroxide at the solid/liquid interface. In the former case the reaction via 2H₂S₂O₂ = 3S + H₂SO₃ + H₂O would yield 75% elemental sulfur whilst the reaction 2H₂SO₂ = S + H₂SO₃ + H₂O would yield 50% elemental sulfur. Moreover, the increase in yield of elemental sulfur in acidic solutions of low pH is a result of the formation of H₂S due to acid dissolution of a metal sulfide, followed by the reaction H₂S + H₂S₂O₂ = 3S + 2H₂O (Lotens and Wesker, 1987). Thus, sulfate formation has been ignored in the kinetic analysis of sulfide oxidation. Nevertheless, the final copper(II) product of chalcocite/covellite oxidation in oxygenated sulfuric acid solutions with low sodium chloride is the thermodynamically stable ion-pair Cu(SO₄)⁰ shown in reaction R16 (Table 1).

Miki and Nicol (2008a) reported the similarities of voltammetric peak potentials and the potentiometric current transients of covellite and chalcopyrite. The onset of the transpassive region during chalcopyrite oxidation has been considered as an indication of the formation of covellite (Viramontes-Gamboa et al., 2007). The leaching results have also demonstrated that chalcopyrite dissolves through the formation of covellite and subsequent oxidation of covellite in iron(III) sulfate solutions (Cordoba et al., 2008b). These facts support the dissolution mechanism of chalcopyrite via reaction R1 in Table 1 proposed by Peters (1976b) and Nicol (2007) and justify the extension of the present discussion on the basis of electrochemical active-passive behaviour of covellite to discuss reasons for passivation in sulfate media, and non-passivating role of chloride in sulfate systems.
Muir and Ho (2006) described the beneficial effect of chloride in nickel sulfide leaching as a result of inhibition of the formation of a passivating layer of NiS\textsubscript{2}. By analogy with reactions of NiS, it would seem that passivation of CuS due to formation of CuS\textsubscript{2} is inhibited by chloride via an electrochemical mechanism (Muir, 2009). The Raman spectroscopic studies by Parker et al. (2003) also provide some evidence for the disruption of the formation of disulfide type layer on chalcopyrite surface in the presence of chloride. However, subsequent studies by Parker et al. (2008a-b) using surface enhanced Raman scattering of chalcopyrite surface showed similar oxidation products in both hydrochloric and sulfuric acid solutions. The surface species with S-S bonding in transpassive region were not characteristic of polysulfide or polythionates. The production of oxidation products with S-S bonds at lower potentials in sulfuric acid, than that in hydrochloric acid, appeared to be a result of the mechanistic or ionic strength differences in the sulfate and chloride systems (Parker 2008b).

Based on electrochemical and XPS studies, the dissolution/passivation products formed during electrochemical oxidation of chalcopyrite in 1 mol dm-3 perchloric acid were identified as Fe2+ and metastable CuS\textsubscript{2}* at lower potentials (~0.74 V) and elemental sulfur at higher potentials (> 1.24 V) (Yin et al., 1995). Buckley and Woods (1984) considered the depletion of iron and conversion of chalcopyrite to (i) CuS\textsubscript{2} after exposure to air for several weeks, or (ii) Cu\textsubscript{0.8}S\textsubscript{2} after conditioning in acid solutions. The structure of the metastable phase CuS\textsubscript{2}* formed on the surface (passive film) has not been identified, but reported to be different from that of pyrite. A wide variety of experimental techniques have shown that CuS\textsubscript{2} has a monovalent (d10) rather than a divalent (d9) oxidation state of copper (Ueda et al., 2002). If the chalcopyrite structure is represented by an ionic bonding model (Cu+)(Fe3+)(S2-)\textsubscript{2} (Crundwell, 1988; Mikhlin et al., 2004), the formation of a passive film according to the anodic reaction
\((\text{Cu}^+) (\text{Fe}^{3+})(\text{S}^{2-})_2 = \text{CuS}_2 + \text{Fe}^{2+} + 2e^-\) can be considered with a possible change in oxidation states \((\text{Cu}^+)(\text{S}^2^-)\) proposed by Yin et al. (1995). Another possibility is the redox or precipitation reaction to produce \(\text{CuS}_2\) on the surface, from ions in solution: \(\text{Cu}^{2+} + \text{S}^{2-} = (\text{Cu}^+)(\text{S}^2^-)\), where the disulfide \((\text{S}^{2-})\) can be formed by the oxidation of \(\text{H}_2\text{S}\) formed by non-oxidative dissolution (reaction R40 in Table 2).

Hackl et al. (1995) described chalcopyrite dissolution as a two stage reaction: (i) formation of intermediate disulfide \(\text{Cu}_{1-x}\text{Fe}_{1-y}\text{S}_2\) \((y \gg x\text{ and } x+y \sim 1)\) during pressure oxidation due to preferential initial leaching of iron, and (ii) slow dissolution of copper from the disulfide producing a copper polysulfide \((\text{Cu}_{1-x-z}\text{S}_2)\) causing passivation. Klauber et al. (2001) ruled out the formation of polysulfide \(\text{CuS}_n\) \((n>2)\) and noted the possibility of formation of only a few atomic layers of the non-stoichiometric \(\text{Cu}_{0.8}\text{S}_2\). Thus, it is important to estimate the formation constants of \(\text{CuS}_2\) to improve the understanding of passivation reaction(s) of copper sulfides.

6. Formation constants of interim copper species

6.1 CuS\(_2\) Species

Table 3 lists equilibrium constants for the formation of various ionic or neutral complex species and insoluble salts of Cu(II) and Fe(II) for comparison. The approximate linear correlation of formation constants of Cu(II) and Fe(II) complexes in Fig. 3b can be used to predict the formation constants at 25°C: Cu(HS)\(_2\)\(^0\) \((-10^8)\), CuS\(_2\) \((-10^{39})\). The values shown in brackets were calculated by substituting the reported values for Fe(HS)\(_2\) \((10^{22})\) and FeS\(_2\) \((10^{26})\) from Young et al. (2003) and HSC 6.1 database in the mathematical expression representing an approximately linear correlation in
Fig. 3a. This allows the calculation of approximate values of standard reduction potentials for reactions involving CuS$_2$ listed in Table 2 (R43, R46, R47). The lower values of E^o for the corresponding nickel couples listed in Table 2 indicates the passivation of NiS by NiS$_2$ at a lower potential. A potential-pH diagram for Ni-S-H$_2$O system that shows a large stability region of NiS$_2$ in the potential range 0-0.25 V in acidic media was published by Muir and Ho (2006).

Cyclic voltammetric investigations of the dissolution of covellite in 1 mol dm$^{-3}$ H$_2$SO$_4$ at 20°C have shown that the decomposition of CuS starts at 0.56 V (Hillrichs and Bertram, 1983). This is consistent with $E^o = 0.53$ V for reaction R46 in Table 2. The peak potential of 0.72 V of the cyclic voltammogram of CuS in sulfuric acid media is also in excellent agreement with the calculated $E^o = 0.72$ V for reaction R43. However, visual evidence for sulfur formation was found after anodization at a much higher potential of 2.35 V (Hillrichs and Bertram, 1983). In contrast, the current-potential curve of NiS in 0.5 mol dm$^{-3}$ H$_2$SO$_4$ showed a peak at a lower potential of \sim1.34 V (Muir and Ho, 2006). Moreover, anodic oxidation of NiS produced S, NiS$_2$ and S$_2$O$_3^{2-}$ at a potential of \sim1 V in mixed sulfate/chloride media. These differences warrant further electrochemical studies and discussion beyond the scope of the present study.

Here, the main focus is the beneficial role and the de-passivation effect of chloride ions during oxidation of covellite by oxygen.

6.2 Cu(OH)(Cl) species

If oxygen is adsorbed on the surface, as noted by Fisher et al. (1992), the direct oxidation represented by reaction R14 will produce sulfur on the sulfide mineral surface. Other reactions in Table 1 represent the non-oxidative or oxidative dissolution
of covellite and the proposed role of the common anion X−. For example, the formation of ion-pairs HSO\textsubscript{4}− and Cu(SO\textsubscript{4})0 is taken into account in reactions R10 and R16, while the formation and reaction of interim mixed complexes Cu(SH)(X) and Cu(OH)(X) is considered in reactions R21-R27. McDonald and Langer (1983) considered the formation of Cu(OH)(Cl)\textsubscript{x}(1-x) during the leaching of copper sulfides and estimated the formation constants $10^{10.5}$ (25°C) and $10^{9.1}$ (105°C). Fig. 3a shows a linear correlation of the logarithmic values of equilibrium constants listed in Table 3 for Cu(II) and Pb(II). An equilibrium constant of $10^{13.7}$ has been reported for the formation of Pb(OH)(Cl)\textsubscript{x} (Wagman et al., 1982). This value can be used in the equation for the linear correlation in Fig. 3a to predict the relevant equilibrium constant of $10^{14.2}$ for the formation of Cu(OH)(Cl)\textsubscript{x} at 25°C. The calculated concentration of Cu2+ in 0.5 mol dm−3 NaCl solution at pH 4 is 9.5×10^{-4} mol dm−3. This explains the precipitation of copper at low acidities as observed by Cheng and Lawson (1991a).

It can be seen from Table 3 and Fig. 3a that the magnitudes of formation constants of complex species or solids from Cu2+ ions are comparable to those from Pb2+ ions. This may be related to the comparable softness of Cu2+ and Pb2+ (Fig. 4). Softness is a property related to the polarizability of ions (Marcus, 1997). According to the concept of soft and hard acids and bases (Pearson, 1973), soft ions prefer forming complexes with soft ligands. It is reasonable to suggest, on the basis of the apparent descending order of softness $S^{2−} > HS^{−} > OH^{−} > Cl^{−}$ in Fig. 4, that the thermodynamically favourable oxidative dissolution process of CuS to Cu(SO\textsubscript{4})0 by oxygen in acidic sulfate media would involve the three step transformation:

\[
\text{CuS} \rightarrow \text{Cu(SH)(Cl)} \rightarrow \text{Cu(OH)(Cl)} / S \rightarrow \text{Cu(SO}_{4}0) / S
\]

(i) \hspace{1cm} (ii) \hspace{1cm} (iii)
as described in reactions R24, R25, R26, and R29, as a result of (i) protonation and adsorption of Cl\(^-\), (ii) reaction with O\(_2\), and (iii) reaction with HSO\(_4\)^–.

A comparison of rate data for the dissolution of covellite in the absence or presence of chloride ions also supports the formation of Cu(OH)(Cl) as an interim species. A low rate was observed for chloride-free leaching of covellite in 0.5 mol dm\(^{-3}\) HNO\(_3\) and 0.25 mol dm\(^{-3}\) H\(_2\)SO\(_4\) solutions at 90 °C under an oxygen pressure of 101.3 kPa, where < 10% copper was leached after 6 h. However, the leaching was enhanced by the addition 0.5 mol dm\(^{-3}\) NaCl to both acids. Leaching at 101.3 kPa oxygen pressure in the two cases: (i) 0.5 mol dm\(^{-3}\) HNO\(_3\) + 0.5 mol dm\(^{-3}\) NaCl, and (ii) 0.25 mol dm\(^{-3}\) H\(_2\)SO\(_4\) + 0.5 mol dm\(^{-3}\) NaCl showed identical leaching curves and > 80% copper extraction after 6 h (Cheng and Lawson, 1991b). These results were also identical to those obtained with 0.5 mol dm\(^{-3}\) HCl, indicating that the beneficial role of chloride ions is due to the involvement of the anion X\(^-\) as in reactions R21-R23, and the stronger complexation when X\(^-\) = Cl\(^-\), compared to X\(^-\) = HSO\(_4\)^–. Further support for the beneficial role of chloride ions in the surface reaction is evident from rate analyses based on heterogeneous kinetic models described in section 7.

7. Rate data and kinetic models for covellite

Cheng and Lawson (1991b) reported the effect of temperature (75-95°C), oxygen partial pressure (5.1-101.3 kPa), particle size (13-56 μm), and concentration of sulfuric acid (0.005 – 2 mol.dm\(^{-3}\)) and sodium chloride (0.01-2 mol.dm\(^{-3}\)) on the leaching of mono-sized covellite particles at a solid/liquid ratio of 1 g dm\(^{-3}\), and an agitation speed of 1000 rpm in batch leaching. The rate data for dissolution during first two hours obeyed a non-porous shrinking particle (sphere) kinetic model described by Eq. 1.
1 - (1 - X_b)^{1/3} = \left(\frac{bk_bC_A}{r_o\rho} \right) t = k_{ss} t \tag{1}

This model considers: (i) a surface reaction of a solid B with a reactant A of concentration C_A (mol.m^{-3}) in solution at a stoichiometric molar ratio of B/A = b/1, A(aq) + bB(s) → products, and (ii) a decrease in surface area due to the decrease in initial particle radius r_o (m) with time t (s) (Levenspiel, 1972). The terms ρ (mol m^{-3}) and k_{ss} (s^{-1}) represent the molar concentration of reacting metal in solid B and the apparent rate constant, respectively, while X represents the fraction of metal leached after time t. The term k (m s^{-1}) in Eq. 1 represents the intrinsic rate constant of the surface reaction, which has the same units as the mass transfer coefficient.

Fig. 5 shows the applicability of Eq. 1 for the dissolution of covellite during initial leaching over 2 h at different oxygen partial pressures. Similar plots were used to determine the apparent rate constants listed in Table 4 from the slopes of linear relations, such as in Fig. 5. The increase in rate constant with increase in temperature from 75 °C to 95°C obeyed the Arrhenius equation \(k = A e^{(-E/RT)} \) with an activation energy of \(E = 77 \text{kJ.mol}^{-1} \) (Cheng and Lawson, 1991b). According to Eq. 1, a decrease in particle size from 58 μm to 28 μm is expected to increase the value of \(k_{ss} \) by a factor of \(58/28 = 2.1/1 \). This is consistent with the observed ratio \(2/0.9 = 2.2/1 \) of \(k_{ss} \) values of tests G1 and G2 in Table 4. Thus, all the results indicate surface reaction controlled dissolution kinetics of covellite over the initial period of one or two hours.

Other forms of Eq. 1 have also been employed by researchers - depending on the minerals and reagents that affected the surface reaction. For example, copper leaching from chalcopyrite particles by oxygenated acid solutions has been rationalised on the basis of Eq.2. In such cases empirical values of K, b_kB have been useful in predicting leaching performance under different conditions (Lin and Sohn, 1987). The half order
reaction with respect to H^+ and O_2 shows the electrochemical nature of the surface reaction. Similar analysis of apparent rate constants of covellite leaching is essential for the comparison of measured leaching rates with mass transport calculations.

$$1 - (1 - X_B)^{1/3} = b_0 k_b [H^+]^{0.5} \left(\frac{[O_2]}{1 + K[O_2]} \right)^{0.5} t \quad (2)$$

8. Factors affecting apparent rate constants

A proper analysis of k_{ss} values for covellite leaching as a function of different variables can be complicated due to a number of reasons. Firstly, the change in hydrogen ion concentration in bulk according to the sulfate/bisulfate equilibrium and the sodium ion concentration has to be taken into account by considering the relevant equilibrium constants at elevated temperatures. Fig. 6 shows the change in actual concentration of hydrogen ions at 90°C with increase in acid concentration, while the concentration of sulfate ions remains negligibly small.

Secondly, the dependence of dissolved oxygen concentration on temperature and background electrolytes has to be considered on the basis of empirical relationships proposed by Tromans (1998). The concentration of dissolved oxygen increases with increasing oxygen mole fraction (Table 4), but decreases with increasing concentration of sodium chloride and sulfuric acid. Fig. 7 shows the effect of temperature on oxygen solubility in water based on the equations proposed by Tromans (1998). The effect of temperature on the intrinsic rate constant for the dissolution of B based on the Arrhenius equation can be combined with Eq. 1 to derive Eq. 3. The superscript a in Eq. 3 represents the reaction order with respect to the concentration of reagent A. Thus,
the activation energy, E (kJ.mol$^{-1}$), based on Eq. 4 is more reliable and suitable for comparison.

$$1 - (1 - X_b)^{1/3} = \left(\frac{b(A^* e^{-E_{r,\rho}/RT})k_{s,t}(C_A)^a}{r_{c,\rho}} \right) = k_{s,t}$$ (3)

$$\ln \left(\frac{k_{s,t}}{(C_A)^a} \right) = \ln \left(\frac{bA^*}{r_{c,\rho}} \right) - E \left(\frac{10^3}{RT} \right)$$ (4)

Thirdly, the formation of elemental sulfur or other products may block the surface/pores. This would change the kinetic behaviour to that described by a shrinking core model: $1-3(1-X)^{2/3} + 2(1-X) = 6CD_{r,\rho}t$, where D = diffusion coefficient of reactant or product (m2 s$^{-1}$) through a porous solid on the surface. For example, Carneiro and Leao (2007) showed the validity of this model for the leaching of chalcopyrite by ferric sulfate in non-chloride solutions. Bertram and Hillrichs (1981) noted that the adsorption of metastable copper oxides (hydroxides) as well as a product layer of S/CuO (Fig. 1b) on the sulfide surface will hinder the copper ion flux during anodic oxidation. It is expected that the beneficial effect of chloride ion is a result of avoiding such product layers or passivating layers of CuS$_2$ being formed on the sulfide surface. Thus, it is important to consider the effect of the actual concentration of dissolved oxygen, hydrogen ions, and chloride ions on the apparent rate constants, which would lead to reaction orders and activation energy and shed more light on reaction mechanism.

9. Reaction orders and activation energy of covellite leaching

Fig. 8a shows a logarithmic plot of $k_{s,t}$ as a function of the concentration of variables such as hydrogen ions, chloride ions, or dissolved oxygen, when the concentration of acid, salt, or oxygen partial pressure was changed in the case of
covellite leaching. The slopes of the linear relationships confirm a reaction order of ~0.5 and ~1 with respect to the concentration of dissolved oxygen and chloride ions, respectively. The reaction orders with respect to hydrogen and chloride ions are approximately zero at higher concentrations. Although the presence of chloride ions is essential in order to increase the rate of dissolution of covellite by dissolved oxygen in sulfuric acid media at 90°C, concentrations of sodium chloride above 0.5 mol dm⁻³ do not significantly influence the rate. This is consistent with many examples reported in the literature, where an increase in background chloride beyond 5-20 g.dm⁻³ in sulfate systems did not show a significant influence on the leaching kinetics and the final copper extraction (Subramanian and Ferrajuolo, 1976; Lu et al., 2000a,b; Deng et al., 2001; Ferron et al., 2002, Kinnunen and Puhakka, 2004; Carneiro and Leao, 2007; Herreros and Vinals, 2007). The results for the first stage leaching of chalcocite described previously (Cheng and Lawson, 1991a, Senanayake, 2007c, 2008b) are shown in Fig.8b for later comparison in section 10.

Cheng and Lawson (1991a) showed that the second stage leaching of chalcocite also obeys a shrinking sphere kinetic model. Fig. 9 plots ln\{kₛ/(C₀₂)⁰.⁵\} as a function of (10³/RT) according to Eq. 4. The second stage leaching of chalcocite and the first stage (initial) leaching of covellite show good linear relationships with y-intercepts close to 29 and slopes corresponding to activation energies of 96 and 101 kJ.mol⁻¹, respectively. These activation energies are higher than the values of 69 and 77 kJ.mol⁻¹ reported by Cheng and Lawson (1991a,b), but they support the two stage leaching mechanism of chalcocite, via covellite, and confirm that covellite leaching is controlled by a surface chemical reaction. Further support for the beneficial role of chloride ions on the surface reaction is evident from the mass transfer calculations described below.
10. Intrinsic rate constant and mass transfer coefficient

Previous researchers showed the importance of comparing experimental intrinsic rate constants or rates per unit surface area with the estimated values based on mass transfer coefficients, in order to examine the chemical or mass transport controlled nature of the surface reaction (McCarthy et al., 1998; Nicol and Lazaro, 2003; Nicol, 2007). Following previous work by Rashman and Fedorockova (2006), the experimental value of k_B in Eq. 1 can be compared with the mass transfer coefficient (k_m) based on Eqs. 5-8 (Cussler, 1997):

$$k_m = \frac{S_D}{L}$$ \hspace{1cm} (5)

$$Sh = 2 + 0.6Gr^{1/4}Sc^{1/3}$$ \hspace{1cm} (6)

$$Gr = \frac{L^3g(\Delta \rho / \rho)}{\nu^2}$$ \hspace{1cm} (7)

$$Sc = \frac{\nu}{D}$$ \hspace{1cm} (8)

where Sh = Sherwood number, Gr = Grashof number, Sc = Schmidt number, D = diffusion coefficient, L = characteristic length (diameter of particle), $\Delta \rho / \rho$ = fractional density change based on density of fluid and solid particle, ν = kinematic viscosity of fluid. Here, k_m represents the mass transfer coefficient of the reactant through the fluid film around the suspended particle due to natural convection.

The first order dependence of k_{ss} on chloride ion concentration (at $[Cl^-] < 0.5$ mol.dm$^{-3}$) can be used to determine the value of k_B in Eq. 1. The y-intercept of line (e) corresponding to $Y = Cl^-$ in Fig. 8a represents:

$$\log\left(\frac{bk_B}{r_o \rho}\right) = -6.96$$ \hspace{1cm} (9)
For pure covellite of density \(= 4.6 \text{ g cm}^{-3}\) (Kelly and Spottiswood, 1997), particle diameter \(= 19 \times 10^{-6} \text{ m}\) and molar masses of \(\text{Cu} = 63.6 \text{ g.mol}^{-1}\), \(\text{S} = 32.1 \text{ g.mol}^{-1}\), the value of \(r_o \rho_{\text{Cu}}\) is \(0.31 \text{ mol.m}^{-2}\). The substitution of these values, and the value of \(b = 1\) based on reaction R15 in Table 1 in Eq. 10, gives an experimental value of \(k_B = 3.3 \times 10^{-6} \text{ m s}^{-1}\) for the intrinsic rate constant. The diffusion coefficients of \(\text{H}_3\text{O}^+\), \(\text{Cl}^-\) and \(\text{O}_2\) at \(25^\circ\text{C}\) are all close to \(2 \times 10^{-9} \text{ m}^2 \text{ s}^{-1}\) (Marcus, 1997). The use of \(D = 6 \times 10^{-9} \text{ m}^2 \text{ s}^{-1}\) at \(85^\circ\text{C}\) leads to a calculated value of \(k_m = 1.1 \times 10^{-3} \text{ m s}^{-1}\) based on Eqs. 5-8 (Table 5). The experimental value of \(k_B (\sim 10^{-6} \text{ m s}^{-1})\) for the surface reaction (Eq. 10) is three orders of magnitude lower than the estimated value of \(k_m\) from Eqs. 5-8 (\(\sim 10^{-3} \text{ ms}^{-1}\)). This shows that the approximately first order dependence of \(k_{ss}\) of covellite on the concentration of chloride ions is due to the involvement of chloride in the surface reaction, rather than mass transport to the surface. This situation is similar to the previously reported results (Raschman and Fedorockova, 2006) in which the intrinsic rate constant for the surface reaction for the dissolution of periclase in hydrochloric acid was three orders of magnitude lower than the calculated mass transfer coefficient of acid.

The initial rate of the surface reaction per unit surface area can be expressed by Eq. 10 (Senanayake, 2007a). According to Fick’s first law, the flux of \(A\) is expressed by Eq. 11. At steady state, reagent \(A\) reacts with solid \(B\) at the same rate as it arrives at the surface. This leads to Eq. 12 for the rate of surface reaction at steady state (\(C_s = 0\)). The use of \(k_m\) calculated from Eqs. 5-8 allows the comparison of estimated rate (Eq. 12) with measured rate (Eq. 10).

\[
R = k_{ss} r_o \rho\] \hspace{1cm} (10)

\[
\text{Flux} = k_m (C_A - C_s)\] \hspace{1cm} (11)

\[
R = b k_m C_A \quad (\text{R and flux in mol m}^{-2} \text{ s}^{-1})\] \hspace{1cm} (12)
Line (d) in Fig. 10 shows the effect of concentration of dissolved oxygen on the experimental rate of dissolution of covellite. The results for chalcocite from previous studies (Table 4, Fig. 8b) are also shown by line (a) in Fig. 10 for comparison. In the case of chalcocite, the estimated and measured rates closely agree, especially if a value of $b = 1$ was used, indicating that at steady state the surface reaction is controlled by the oxygen mass transfer. However, in the case of covellite, the measured rates are one or two orders of magnitude lower than the estimated rates. The fact that the rate is proportional to $(C_{O2})^{0.45}$ and $(C_{Cl}^{-})^{1}$ based on the slopes of lines d and e in Fig. 8a, respectively, indicates the importance of considering a mechanism which involves both these species in the surface reaction.

11. Electrochemical evidence for chloride assisted surface reaction

Previous studies have shown that a comparison of the predicted potentials of various redox couples with the peak potentials of voltammograms of relevant minerals/metals can be used to examine the nature of interim species formed on the surface during leaching reactions (Hillrichs and Bertram, 1983; Wadsworth and Zhu, 2005, Senanayake, 2008a). The lines in Fig. 11 show the calculated E^0 values for the formation of elemental sulfur and different copper species including chloride, oxides and hydroxides and selected sulfur species during covellite oxidation as a function of temperature.

Hillrichs and Bertram (1983) noted that the anodic dissolution/decomposition of CuS will proceed only when the current densities are low and the rate of oxidation reaction $CuS \rightarrow CuO/S$ becomes low compared that of $CuS \rightarrow Cu^{2+}/S$. This was consistent with the non-passivated CuS decomposition at very low current densities.
reported by Peters (1977b). In the reported voltammogram for the anodic oxidation of covellite in 0.2 mol.dm\(^{-3}\) H\(_2\)SO\(_4\)/NaCl at 25\(^\circ\)C (Miki and Nicol, 2008a), the two peak potentials at 0.62 V and 0.74 V are consistent with the calculated potentials (reactions R39 and R44 in Table 2 and “a” in Fig. 11). The two couples represented by these potentials are CuS/CuCl\(^+\), S and CuS/Cu\(_2\)(OH)\(_3\)Cl, S, respectively. The lower peak potential of 0.62 V is also in excellent agreement with the \(E^0\) value of 0.62 V relevant to Cu(OH)Cl calculated in the present study (reaction R39 in Table 2 and “b” in Fig. 11). Moreover, the calculated values of Eh for these two redox couples at 25\(^\circ\)C based on the Nernst equation, \(E^0\) in Table 2, and the two concentrations 0.2 mol dm\(^{-3}\) Cl\(^-\), and 0.2 mol dm\(^{-3}\) H\(^+\); assuming the dissociation H\(_2\)SO\(_4\) = H\(^+\) + HSO\(_4\)\(^-\) (Fig. 6) and unit activity coefficients are 0.721 and 0.601 V respectively. These values are close to the measured peak potentials reported by Miki and Nicol (2008a) indicating the possibility of precipitation of these solids under the specified conditions. In contrast, the \(E^0\) values of other redox couples of interest: CuS/CuCl\(_2\),S (0.792 V), CuS/CuCl,S (0.704 V) and CuS/CuCl, H\(_2\)S\(_2\)O\(_3\) (0.539 V) differ from the measured values noted above and in Fig.11. The observed increase in anodic peak currents with increasing chloride concentration also supports the involvement of chloride ions in the rate controlling step. The beneficial effect of chloride ions upon anodic oxidation of covellite in a sulfate system can be rationalised on the basis of reactions R48-R50 in Table 2, where the sum of reactions R48-R50 and R35 gives the overall oxidation reaction R16. Thus, the formation of Cu(OH)Cl (reaction R26) can be considered as the rate controlling step for covellite leaching in oxygenated sulfuric acid-chloride solutions.

12. Surface reaction mechanism of covellite leaching
The thermodynamically favoured reactions between dissolved oxygen and covellite expressed by R13-R14 in Table 1 at zero chloride concentration are expected to be very slow to yield very low copper extraction from CuS even in 0.5 mol dm$^{-3}$ H$_2$SO$_4$ at 90°C, as observed in Fig. 2a. Thus, the beneficial role of chloride ions during the leaching of covellite by oxygen can be rationalised according to the anion-influenced adsorption-reaction-desorption mechanism via Cu(SH)(Cl) and Cu(OH)(Cl), described by reactions R24-R29 in Table 1. Relevant mathematical expressions are described in Appendix A.

Reactions R26 and R27 would lead to the formation of a more porous surface, compared to the tight passivating surface formed in the absence of chloride. The formation of Cu(I) chloro complexes in oxygen deficient chloride slurry systems, reported by Cheng and Lawson (1991b) is possible via CuCl produced according to reaction R27. Likewise, the formation of both sulfur and sulfate can be related to the interim species H$_2$S$_2$O$_2$ in side reactions R30-32 as well as other species such as thiosulfate (Ho and Muir, 2006). The interim product CuCl can be dissolved as CuCl$_{n-1}^-$ in excess chloride and/or be oxidized to Cu(II) salts by oxygen (R28). The non-existence of thiosulfurous acid (H$_2$S$_2$O$_2$) and dithionous acid (H$_2$S$_2$O$_4$) in the free molecular state (Greenwood and Earnshaw, 1984) indicates the possible conversion of only a small percentage of sulfide to sulfate via these unstable intermediates and side reactions, or other species such as thiosulfate, as observed by Cheng and Lawson (1991b). Further work is essential to compare and contrast the leaching behaviour of CuS and CuFeS$_2$.

13. Summary and concluding remarks
The leaching results of synthetic covellite in the initial 15-30 minutes follow a shrinking sphere kinetic model, indicating that the rate is controlled by a chemical reaction at the surface. Rate constants correspond to a half order reaction with respect to dissolved oxygen concentration, but zero order with respect to hydrogen ions at high acid concentrations. Chloride ions are involved in the surface reaction as revealed by the first order dependence of the apparent rate constant on chloride ion concentration in the range 0.02-0.25 mol dm\(^{-3}\). However, the calculated mass transfer coefficient of species such as oxygen and chloride ions (\(k_m \sim 10^{-3} \text{ m s}^{-1}\)) is three orders of magnitude larger than the intrinsic rate constants based on a shrinking sphere kinetic model (\(k_B \sim 10^{-6} \text{ m s}^{-1}\)). This also supports the view that chloride ions are involved in the rate controlling surface chemical reaction. The calculated standard reduction potentials compare reasonably well with the reported peak potentials of linear sweep voltammograms of covellite. This supports the proposed surface reaction mechanism via the formation of mixed-ligand complexes, in the form of adsorbed or dissolved species.
Appendix A

Reaction of CuS in oxygenated acid in the presence of chloride ions

1. \(\text{CuSH}^+ + \text{Cl}^- \rightleftharpoons \text{Cu(SH)(Cl)}_{\text{ads}} \) (adsorption)

\[\theta \]

2. \(\text{Cu(SH)(Cl)}_{\text{ads}} + 0.5\text{O}_2 \rightarrow \text{Cu(OH)(Cl)}_{\text{ads}} \) (or \(0.5\text{H}_2\text{S}_2\text{O}_2 + \text{CuCl} \)) (rate controlling)

3. \(\text{Cu(OH)(Cl)}_{\text{ads}} + \text{HSO}_4^- = \text{Cu(SO}_4)^0 + \text{H}_2\text{O} + \text{Cl}^- \)

4. \(\text{CuS} + \text{H}_2\text{SO}_4 + 0.5\text{O}_2 = \text{Cu(SO}_4)^0 + \text{H}_2\text{O} \) (overall)

\[K = \frac{\theta}{(1-\theta)[\text{Cl}^-]} \]

\[\theta = \frac{K[\text{Cl}^-]}{1 + K[\text{Cl}^-]} \]

\[R = k \theta [\text{O}_2]^a = \frac{kK[\text{Cl}^-][\text{O}_2]^a}{1 + K[\text{Cl}^-]} \]

\(\theta \) = fraction of CuS surface that undergoes reaction with \(\text{O}_2 \)

\(K \) = equilibrium constant for the adsorption equilibrium in reaction (1)

\(k \) = rate constant

\(a \) = reaction order with respect to \(\text{O}_2 \)

\(R \) = reaction rate

At high concentrations of \(\text{Cl}^- \) it may be assumed that \(1 \ll K[\text{Cl}^-] \). This leads to the expression \(R = k[\text{O}_2]^a \), which explains the chloride independent rates at higher chloride concentrations.
References

Figure Captions

Fig. 1.
(a) Potential-log[Cl\(^{-}\)] diagrams for iron-copper-chloride-water system at 25 °C and 0.1 mol dm\(^{-3}\) metal ions (Senanayake and Muir, 2003); (b) potential-pH diagram for chalcocite and covellite leaching by oxygen at 25°C and 90°C and unit activities based on Outukumpu HSC 6.1 software (dashed lines represents O\(_2\)/H\(_2\)O and H\(_2\)/H\(^+\) couples).

Fig. 2.
Effect of sodium chloride on copper leaching from (a) covellite by oxygen, 13 μm, 90°C, 0.5 mol dm\(^{-3}\) H\(_2\)SO\(_4\); (b) chalcocite by oxygen, 31 μm, 85°C, 0.5 mol dm\(^{-3}\) H\(_2\)SO\(_4\) (data from Chang and Lawson, 1991a,b).

Fig. 3.
Linear correlation between equilibrium constants for complexation and precipitation of M(II): (a) Cu(II)-Pb(II) at 25°C; (b) Cu(II)-Fe(II) at 25°C and 90°C (data from Table 3 Young et al., 2003 and HSC 6.1 database).

Fig. 4
Softness of cations and anions (Marcus, 1997).

Fig. 5
Effect of oxygen mole percent in the bubbling gas on 1-(1-X)^{1/3} during covellite leaching (D1-D4 described in Table 4, data from Cheng and Lawson, 1991b).

Fig. 6
Effect of sulfuric acid concentration on species distribution in 0.5 mol dm\(^{-3}\) NaCl+H\(_2\)SO\(_4\) at 90 °C (Thermodynamic data from Hogfeldt, 1982)

Fig. 7
Effect of temperature on concentration of dissolved oxygen in water (Tromans, 1998).

Fig. 8
Log-log plots of k\(_{ss}\) versus reagent concentration (a) covellite: Y = O\(_2\) (D1-D4), Y= Cl\(^{-}\) (E1-E4), Y = H\(^+\) (F1-F4); (b) chalcocite; data from Table 4.

Fig. 9
Arrhenius plots for the second stage leaching of chalcocite and initial leaching of covellite based on Eq. 4 (k\(_{ss}\) from Cheng and Lawson 1991a,b; dissolved oxygen concentration from Fig. 7).

Fig. 10
Correlation between dissolved oxygen concentration and measured (Eq. 10) or estimated (Eq. 12) rate data for chalcocite (85°C) and covellite (90°C) (see text).
Fig. 11
Effect of temperature on standard reduction potentials of covellite leaching products based on Outokumpu HSC 6.1 software.
Fig. 1.
(a) Potential-log[Cl−] diagrams for iron-copper-chloride-water system at 25 °C and 0.1 mol dm-3 metal ions (Senanayake and Muir, 2003); (b) potential-pH diagram for chalcocite and covellite leaching by oxygen at 25°C and 90°C and unit activities based on Outukumpu HSC 6.1 software (dashed lines represents O\textsubscript{2}/H\textsubscript{2}O and H\textsubscript{2}/H+ couples).
Fig. 2
(a)

Effect of sodium chloride on copper leaching from (a) covellite by oxygen, 13 μm, 90°C, 0.5 mol dm⁻³ H₂SO₄; (b) chalcocite by oxygen, 31 μm, 85°C, 0.5 mol dm⁻³ H₂SO₄ (data from Chang and Lawson, 1991a,b).
Fig. 3.
Linear correlation between equilibrium constants for complexation and precipitation of M(II): (a) Cu(II)-Pb(II) at 25°C; (b) Cu(II)-Fe(II) at 25°C and 90°C (data from Table 3 Young et al., 2003 and HSC 6.1 database).
Fig. 4

Softness of cations and anions (Marcus, 1997).
Fig. 5

Effect of oxygen mole percent in the bubbling gas on $1-(1-X)^{1/3}$ during covellite leaching (D1-D4 described in Table 4, data from Cheng and Lawson, 1991b).

Fig. 6

Effect of sulfuric acid concentration on species distribution in 0.5 mol dm$^{-3}$ NaCl+H$_2$SO$_4$ at 90 °C (Thermodynamic data from Hogfeldt, 1982)
Fig. 7
Effect of temperature on concentration of dissolved oxygen in water (Tromans, 1998).

Fig. 8
(a) Log-log plots of k_{ss} versus reagent concentration (a) covellite: $Y = O_2$ (D1-D4), $Y = Cl^-$ (E1-E4), $Y = H^+$ (F1-F4); (b) chalcocite; data from Table 4.
Fig. 9
Arrhenius plots for the second stage leaching of chalcocite and initial leaching of covellite based on Eq. 4 (*k*_{ss} from Cheng and Lawson 1991a,b; dissolved oxygen concentration from Fig. 7).

Fig. 10
Correlation between dissolved oxygen concentration and measured (Eq. 10) or estimated (Eq. 12) rate data for chalcocite (85°C) and covellite (90°C) (see text).
Fig. 11

Peak potentials of anodic response of rotated electrodes of (a) covellite at ambient temperature in H₂SO₄ + NaCl (0.2 mol dm⁻³ each) (Miki and Nicol, 2008a) marked by asterisks; (b) Calculated value for CuS + H₂O + Cl⁻ = Cu(OH)Cl(s) + S + 2e⁻ (this work).

Fig. 11
Effect of temperature on standard reduction potentials of covellite leaching products based on Outukumpu HSC 6.1 software.
Table 1
Chemical reactions related to formation or oxygenated leaching of copper sulfides
(Some of these reactions were reported by Peters (1976a,b), Muir and Ho (2006); Rademan et al. (1999); Provis et al. (2003); Nicol and Lazaro (2003) (also see text). Equilibrium constants based on Outokumpu HSC 6.1 software).

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Equilibrium constant (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25°C</td>
</tr>
<tr>
<td>Leaching reactions which involve Cu₂S and CuS</td>
<td></td>
</tr>
<tr>
<td>R1. CuFeS₂ + 2H⁺ = CuS + Fe²⁺ + H₂S</td>
<td>10⁻².⁶</td>
</tr>
<tr>
<td>R2. CuFeS₂ + 2H⁺ = 0.5CuS + Fe²⁺ + H₂S + 0.5S</td>
<td>10⁻⁸.⁹</td>
</tr>
<tr>
<td>R3. Cu₂S + 2H⁺ + 0.5O₂ = CuS + Cu²⁺ + H₂O</td>
<td>10⁻²⁰</td>
</tr>
<tr>
<td>R4. NiS₂ + 2H⁺ = NiS + Ni²⁺ + H₂</td>
<td>10⁻⁰.⁹⁹</td>
</tr>
<tr>
<td>R5. NiS + 2H⁺ = Ni²⁺ + H₂S</td>
<td>10⁻².⁰⁸</td>
</tr>
<tr>
<td>R6. NiS + Cu²⁺ = CuS + Ni²⁺</td>
<td>10⁻¹⁴</td>
</tr>
<tr>
<td>R7. NiS₂ + 2Cu²⁺ = Cu₂S + NiS + 2Ni²⁺</td>
<td>10⁻³³</td>
</tr>
<tr>
<td>R8. NiS₄ + 3Cu²⁺ + H₂O + 1.5O₂ = 3CuS + 3Ni²⁺ + 2H⁺ + SO₄²⁻</td>
<td>10⁻¹³⁰</td>
</tr>
<tr>
<td>Non-oxidative leaching of CuS</td>
<td></td>
</tr>
<tr>
<td>R9. CuS + 2H⁺ = Cu²⁺ + H₂S</td>
<td>10⁻¹⁶.⁵</td>
</tr>
<tr>
<td>R10. CuS + H⁺ + HSO₄⁻ = Cu(SO₄)₀⁺ + H₂S</td>
<td></td>
</tr>
<tr>
<td>Leaching of Cu₂S by oxygen (first stage)</td>
<td></td>
</tr>
<tr>
<td>R11. Cu₂S + 0.5O₂ + H₂O = Cu(OH)₂ + CuS</td>
<td>10⁻²⁰</td>
</tr>
<tr>
<td>R12. Cu₂S + 0.5O₂ + 2H⁺ = Cu²⁺ + CuS + H₂O</td>
<td>10⁻²⁶.⁴</td>
</tr>
<tr>
<td>Leaching of CuS by oxygen</td>
<td></td>
</tr>
<tr>
<td>R13. CuS + 0.5O₂ + H₂O = Cu(OH)₂ + S</td>
<td>10⁻¹⁵.⁵</td>
</tr>
<tr>
<td>R14. CuS + 0.5O₂ + 2H⁺ = Cu²⁺ + S + H₂O</td>
<td>10⁻²⁰.³</td>
</tr>
<tr>
<td>R15. CuS + 0.5O₂ + 2H⁺ + Cl⁻ = CuCl⁻ + H₂O + S</td>
<td></td>
</tr>
<tr>
<td>R16. CuS + 0.5O₂ + H⁺ + HSO₄⁻ = Cu(SO₄)₀⁺ + S + H₂O</td>
<td></td>
</tr>
<tr>
<td>Side reactions of CuS</td>
<td></td>
</tr>
<tr>
<td>R17. 2CuS + 2H⁺ + 2Cl⁻ + 1.5O₂ = 2CuCl + H₂S₂O₃</td>
<td>10⁻³⁷.²</td>
</tr>
<tr>
<td>R18. 2CuS + 2Cl⁻ + 2O₂ = 2CuCl + S + SO₄²⁻</td>
<td>10⁻₅⁶.²</td>
</tr>
<tr>
<td>Anion influenced non-oxidative leaching of CuS</td>
<td></td>
</tr>
<tr>
<td>R19. CuS + H⁺ X⁻ = Cu(SH)(X)ads/aq</td>
<td></td>
</tr>
<tr>
<td>R20. Cu(HS)(X)ads/aq + H⁺ X⁻ = CuX₂ + H₂S</td>
<td></td>
</tr>
<tr>
<td>Anion influenced oxidative leaching of CuS</td>
<td></td>
</tr>
<tr>
<td>R21. CuS + H⁺ X⁻ = Cu(SH)(X)ads/aq</td>
<td></td>
</tr>
<tr>
<td>R22. Cu(HS)(X)ads/aq + 0.5O₂ = Cu(OH)(X)ads/aq + S</td>
<td></td>
</tr>
<tr>
<td>R23. Cu(OH)(X)ads/aq + H⁺ X⁻ = CuX₂ + H₂O</td>
<td></td>
</tr>
<tr>
<td>Chloride assisted leaching of CuS in sulfate medium</td>
<td></td>
</tr>
<tr>
<td>R24. CuS + H⁺ = Cu(SH)⁺(ads)</td>
<td></td>
</tr>
<tr>
<td>R25. Cu(SH)⁺(ads) + Cl⁻ = Cu(SH)(Cl)₀(ads/aq)</td>
<td></td>
</tr>
<tr>
<td>R26. Cu(SH)(Cl)₀(ads/aq) + 0.5O₂(ads/aq) = Cu(OH)(Cl)₀(ads/aq) + S</td>
<td></td>
</tr>
<tr>
<td>R27. 2Cu(SH)(Cl)₀(ads/aq) = 2CuCl(ads/aq) + H₂S + S</td>
<td></td>
</tr>
<tr>
<td>R28. 2CuCl(ads/aq) + 0.5O₂ + H₂O = 2Cu(OH)Cl(ads/aq)</td>
<td></td>
</tr>
<tr>
<td>R29. Cu(OH)(Cl)₀(ads/aq) + HSO₄⁻ = Cu(SO₄)₀ + Cl⁻ + H₂O</td>
<td></td>
</tr>
</tbody>
</table>
Possible side reactions

R30. \(2\text{Cu(SH)(Cl)}^0(\text{ads/aq}) + \text{O}_2 = 2\text{CuCl(ads/aq)} + \text{H}_2\text{S}_2\text{O}_2\)
R31. \(\text{H}_2\text{S}_2\text{O}_3 + \text{O}_2 = \text{H}_2\text{S}_2\text{O}_4\)
R32. \(\text{H}_2\text{S}_2\text{O}_4 = \text{H}_2\text{SO}_4 + \text{S}\)

Table 2

Electrochemical reactions and standard reduction potentials at 25°C

<table>
<thead>
<tr>
<th>Reaction</th>
<th>(E^0) (V) at 25°C<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stepwise anodic reactions</td>
<td></td>
</tr>
<tr>
<td>R33. (\text{Cu}_2\text{S} = \text{CuS} + \text{Cu}^{2+} + 2\text{e}^-)</td>
<td>0.491</td>
</tr>
<tr>
<td>R34. (\text{CuS} = \text{Cu}^{2+} + \text{S} + 2\text{e}^-)</td>
<td>0.631</td>
</tr>
<tr>
<td>Cathodic reactions</td>
<td></td>
</tr>
<tr>
<td>R35. (0.5\text{O}_2 + 2\text{H}^+ + 2\text{e}^- = \text{H}_2\text{O})</td>
<td>1.230</td>
</tr>
<tr>
<td>Surface blockage by hydroxide</td>
<td></td>
</tr>
<tr>
<td>R36. (\text{Cu}_2\text{S} + 2\text{H}_2\text{O} = \text{Cu(OH)}_2(\text{ads}) + 2\text{H}^+ + \text{CuS} + 2\text{e}^-)</td>
<td>0.680</td>
</tr>
<tr>
<td>R37. (\text{CuS} + 2\text{H}_2\text{O} = \text{Cu(OH)}_2(\text{ads}) + 2\text{H}^+ + 2\text{e}^-)</td>
<td>0.820</td>
</tr>
<tr>
<td>Surface activation by anions</td>
<td></td>
</tr>
<tr>
<td>R38. (\text{Cu}_2\text{S} + \text{X} = (\text{CuX})^{2+}(\text{ads}) + \text{CuS} + 2\text{e}^-)</td>
<td>0.619</td>
</tr>
<tr>
<td>((\text{X} = \text{H}_2\text{O}, \text{SO}_4^{2-}, \text{Cl}^-, \text{ClO}_4^-, \text{NO}_3^-))</td>
<td></td>
</tr>
<tr>
<td>R39. (\text{CuS} + \text{Cl}^- = \text{CuCl}^+ + \text{S} + 2\text{e}^-)</td>
<td></td>
</tr>
<tr>
<td>Anodic reactions involving disulfide and chloride species</td>
<td></td>
</tr>
<tr>
<td>R40. (2\text{H}_2\text{S} = 4\text{H}^+ + \text{S}_2^{2-} + 2\text{e}^-)</td>
<td>0.700</td>
</tr>
<tr>
<td>R41. (2\text{CuS} = 2\text{Cu}^{2+} + \text{S}_2^{2-} + 2\text{e}^-)</td>
<td>1.675</td>
</tr>
<tr>
<td>R42. (\text{CuS} + 2\text{Cl}^- = \text{CuCl}_2^- + \text{S} + 2\text{e}^-)</td>
<td>0.792</td>
</tr>
<tr>
<td>R43. (\text{CuS}_2 = \text{Cu}^{2+} + 2\text{S} + 2\text{e}^-)</td>
<td>0.715 (0.410 for NiS<sub>2</sub>)<sup>b</sup></td>
</tr>
<tr>
<td>R44. (2\text{CuS} + 3\text{H}_2\text{O} + \text{Cl}^- = \text{Cu}_2\text{Cl(OH)}_3 + 2\text{S} + 3\text{H}^+ + 4\text{e}^-)</td>
<td>0.742</td>
</tr>
<tr>
<td>R45. (\text{CuS} + \text{Cl}^- + \text{H}_2\text{O} = \text{Cu(OH)Cl} + \text{S} + \text{H}^+ + 2\text{e}^-)</td>
<td>0.622</td>
</tr>
<tr>
<td>R46. (2\text{CuS} = \text{CuS}_2 + \text{Cu}^{2+} + 2\text{e}^-)</td>
<td>0.525 (0 V for NiS<sub>2</sub>)<sup>b</sup></td>
</tr>
<tr>
<td>R47. (\text{CuFeS}_2 = \text{CuS}_2 + \text{Fe}^{2+} + 2\text{e}^-)</td>
<td>0.134</td>
</tr>
</tbody>
</table>

Mechanism for chloride assisted dissolution of CuS

R48. \(\text{CuS} + \text{H}^+ + \text{Cl}^- = \text{Cu(SH)Cl}\)
R49. \(\text{Cu(SH)Cl} + \text{H}_2\text{O} = \text{Cu(OH)Cl} + \text{S} + 2\text{H}^+ + 2\text{e}^-\)
R50. \(\text{Cu(OH)Cl} + \text{HSO}_4^- = \text{Cu(SO}_4^0 + \text{H}_2\text{O} + \text{Cl}^-\)

^{a.} data from HSC 6.1 data base or calculated in the present study (see text)

^{b.} corresponding values for couples involving NiS, NiS₂, and Ni²⁺.
Table 3
Equilibrium constants

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Pb(II)</th>
<th>Cu(II)</th>
<th>Fe(II)</th>
<th>Cu(II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M^{2+} + S_2O_3^{2-} = M(S_2O_3)_{0.0}$</td>
<td>$10^{2.42}$</td>
<td>$10^{2.4}$</td>
<td>$10^{2.00}$</td>
<td>$10^{2.4}$</td>
</tr>
<tr>
<td>$M^{2+} + 2S_2O_3^{2-} = M(S_2O_3)_{2.0}$</td>
<td>$10^{4.86}$</td>
<td>$10^{5.4}$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$M^{2+} + CO_3^{2-} = M(CO_3)_0$</td>
<td>10^{7}</td>
<td>$10^{6.77}$</td>
<td>$10^{6.69}$</td>
<td>$10^{6.5}$</td>
</tr>
<tr>
<td>$M^{2+} + 2CO_3^{2-} = M(CO_3)_{2.0}$</td>
<td>10^{9}</td>
<td>10^{10}</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$M^{2+} + OH^- = M(OH)^+$</td>
<td>$10^{6.9}$</td>
<td>$10^{6.27}$</td>
<td>$10^{4.67}$ ($10^{4.70}$)</td>
<td>$10^{5.98}$ ($10^{5.86}$)</td>
</tr>
<tr>
<td>$M^{2+} + 2OH^- = M(OH)_2$</td>
<td>$10^{10.8}$</td>
<td>$10^{12.5}$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$M^{2+} + Cl^- = M(Cl)^+$</td>
<td>$10^{1.6}$</td>
<td>$10^{0.6}$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$M^{2+} + 2Cl^- = M(Cl)_2$</td>
<td>$10^{1.8}$</td>
<td>$10^{0.7}$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$M^{2+} + SO_4^{2-} = M(SO_4)_0$</td>
<td>$10^{2.75}$</td>
<td>$10^{2.36}$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$M^{2+} + NO_3^- = M(NO_3)^+$</td>
<td>$10^{1.2}$</td>
<td>$10^{0.5}$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$M^{2+} + 2NO_3^- = M(NO_3)_{2.0}$</td>
<td>$10^{1.4}$</td>
<td>$10^{0.4}$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$M^{2+} + 2OH^- = M(OH)_2(s)$</td>
<td>$10^{19.9}$</td>
<td>$10^{19.8}$</td>
<td>$10^{15.0}$ ($10^{14.0}$)</td>
<td>$10^{21.6}$ ($10^{20.0}$)</td>
</tr>
<tr>
<td>$M^{2+} + C_2O_4^{2-} = M(C_2O_4)(s)$</td>
<td>$10^{9.1}$</td>
<td>$10^{9.6}$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$M^{2+} + CO_3^{2-} = M(CO_3)(s)$</td>
<td>10^{7}</td>
<td>$10^{8.27}$</td>
<td>$10^{9.85}$</td>
<td>-</td>
</tr>
<tr>
<td>$M^{2+} + H_2O = MO(s) + 2H_+^+$</td>
<td>-</td>
<td>-</td>
<td>$10^{14.5}$ ($10^{11.1}$)</td>
<td>$10^{7.71}$ ($10^{5.70}$)</td>
</tr>
<tr>
<td>$M^{2+} + SO_4^{2-} = M(SO_4)(s)$</td>
<td>-</td>
<td>-</td>
<td>$10^{1.93}$ ($10^{0.70}$)</td>
<td>$10^{3.0}$ ($10^{0.38}$)</td>
</tr>
<tr>
<td>$M^{2+} + S^{2-} = MS(s)$</td>
<td>-</td>
<td>-</td>
<td>$10^{16.9}$ ($10^{15.8}$)</td>
<td>$10^{36.4}$ ($10^{31.8}$)</td>
</tr>
<tr>
<td>$M^{2+} + 3HS^- = M(HS)_3^-$</td>
<td>-</td>
<td>-</td>
<td>$10^{2.71c}$</td>
<td>$10^{6.23c}$</td>
</tr>
<tr>
<td>$M^{2+} + 2HS^- = M(HS)_2^0$</td>
<td>-</td>
<td>-</td>
<td>$10^{2.2c}$</td>
<td>10^{8d}</td>
</tr>
<tr>
<td>$M^{2+} + S_2^{2-} = M(S_2)^0$</td>
<td>-</td>
<td>-</td>
<td>$10^{2.6}$</td>
<td>10^{39d}</td>
</tr>
</tbody>
</table>

b. At 25°C, from HSC 6.1 database, values in parentheses are for 90°C; inconsistency of values in columns a and b for Cu(II) from different references is due to differences in ionic strength and/or methods of measurements.
c. From Young et al. (2003)
d. Predicted values in this work based on Fig. 3a
Table 4
Test conditions used by Cheng and Lawson (1991a,b)

<table>
<thead>
<tr>
<th>Test</th>
<th>T (°C)</th>
<th>size (μm)</th>
<th>[H₂SO₄] (mol dm⁻³)</th>
<th>NaCl (mol dm⁻³)</th>
<th>[O₂] (%)</th>
<th>[O₂] (mol m⁻³)</th>
<th>10⁵ kₚₛ (s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>90</td>
<td>13</td>
<td>0.5</td>
<td>0.5</td>
<td>5</td>
<td>0.039</td>
<td>1</td>
</tr>
<tr>
<td>D2</td>
<td></td>
<td>21</td>
<td>0.164</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>D3</td>
<td></td>
<td>59</td>
<td>0.461</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>D4</td>
<td></td>
<td>100</td>
<td>0.782</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>E1</td>
<td>90</td>
<td>13</td>
<td>0.5</td>
<td>0.1</td>
<td>100</td>
<td>0.741</td>
<td>0.7</td>
</tr>
<tr>
<td>E2</td>
<td></td>
<td></td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>E3</td>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>E4</td>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>F1</td>
<td>90</td>
<td>13</td>
<td>0.005</td>
<td>0.5</td>
<td>100</td>
<td>0.716</td>
<td>2</td>
</tr>
<tr>
<td>F2</td>
<td></td>
<td></td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>F3</td>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>F4</td>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>G1</td>
<td>85</td>
<td>58</td>
<td>0.5</td>
<td>0.5</td>
<td>100</td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>G2</td>
<td></td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Data for covellite

<table>
<thead>
<tr>
<th>Test</th>
<th>T (°C)</th>
<th>size (μm)</th>
<th>[H₂SO₄] (mol dm⁻³)</th>
<th>NaCl (mol dm⁻³)</th>
<th>[O₂] (%)</th>
<th>[O₂] (mol m⁻³)</th>
<th>10⁵ kₚₛ (s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>85</td>
<td>23</td>
<td>0.5</td>
<td>0.5</td>
<td>5</td>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td>A2</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.5</td>
</tr>
<tr>
<td>A3</td>
<td></td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.7</td>
</tr>
<tr>
<td>A4</td>
<td></td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.8</td>
</tr>
<tr>
<td>A5</td>
<td></td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30.7</td>
</tr>
<tr>
<td>A6</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42.7</td>
</tr>
<tr>
<td>B1</td>
<td>85</td>
<td>31</td>
<td>0.5</td>
<td>0.02</td>
<td>100</td>
<td></td>
<td>3.7</td>
</tr>
<tr>
<td>B2</td>
<td></td>
<td></td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td>16.2</td>
</tr>
<tr>
<td>B3</td>
<td></td>
<td></td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td>32.3</td>
</tr>
<tr>
<td>B4</td>
<td></td>
<td></td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td>36.5</td>
</tr>
<tr>
<td>B5</td>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td>39.0</td>
</tr>
</tbody>
</table>

000 rpm, kₛₛ values are based on slopes of linear relationships as in Fig. 5 (see text)
Table 5
Calculated mass transfer coefficients of Y to particles suspended in water

<table>
<thead>
<tr>
<th>Particle</th>
<th>Particle size (μm)</th>
<th>(D_Y) ((m^2 \cdot s^{-1})^2)</th>
<th>(\nu) ((m^2 \cdot s^{-1})^3)</th>
<th>(\Delta \rho / \rho)</th>
<th>Gr</th>
<th>Sc</th>
<th>Sh</th>
<th>(k_m) ((m \cdot s^{-1})^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuS</td>
<td>28</td>
<td>(6 \times 10^{-9})</td>
<td>(2.5 \times 10^{-7})</td>
<td>0.78</td>
<td>2.68</td>
<td>42</td>
<td>4.67</td>
<td>(1 \times 10^{-3}) (at 85°C)</td>
</tr>
</tbody>
</table>

a. Based on Stokes-Einstein equation (Cussler, 1997) at 85°C
c. Eqs. 5-8