Preparation and Bioactivity of 1,8-Cineole Derivatives

This thesis is presented for the degree of Doctor of Philosophy at Murdoch University

by

Allan Ray Knight

2009
I declare that this thesis is my own account of my research and contains, as its main content, work that has not been submitted for a degree at any tertiary institution.

Allan Knight

January 2009
Table of Contents

Table of Contents .. ii
Abstract .. 1
Acknowledgements ... 3
1 Introduction .. 4
2 Literature Review .. 7
 2.1 Eucalyptus Leaf Oil .. 7
 2.2 The Contribution of Eucalypts to Land Rehabilitation ... 8
 2.3 Uses of Eucalyptus Oil .. 9
 2.4 Biological Activity of Eucalyptus Oil and 1,8-Cineole .. 10
 2.4.1 Allelopathy ... 11
 2.4.2 Insecticidal and Acaricidal Activity ... 15
 2.4.3 Antimicrobial Activity .. 20
3 Synthesis of Cineole Derivatives .. 24
 3.1 General Introduction ... 24
 3.1.1 The Chemistry of 1,8-Cineole ... 26
 3.2 Results and Discussion .. 33
 3.2.1 Synthesis of Cineole Esters .. 33
 3.2.2 Enzymatic Resolution of Racemic (1RS, 4SR, 5RS)-1,3,3-Trimethyl-2-oxabicyclo[2.2.2]octan-5-yl ethanoate ... 39
 3.2.3 Preparation of 2-endo-hydroxy-1,8-cineole 14 ... 40
 3.2.4 Attempted Synthesis of Ether Linked Cineoles .. 43
 3.2.5 Proton Nuclear Magnetic Resonance Spectral Analysis 44
3.3 Experimental ... 46
3.3.1 General Procedures ... 46
4 1,8-Cineole Metabolites from Bacterial Culturing .. 61
 4.1 Biotransformations of 1,8-Cineole ... 61
 4.2 Isolation of Bacterium and Growth Conditions ... 66
 4.2.1 Growth of the Bacterium ... 69
 4.2.2 Identification of Bacterial Isolate MUELAK1 .. 71
 4.2.3 Identification of Bacterial Metabolites ... 75
 4.3 Twenty Litre Culturing to obtain 2-endo-1,8-Cineole 14 80
5 Herbicidal Assessment of the Cineoles and their Derivatives 85
 5.1 General Introduction ... 85
 5.1.1 Weed Management ... 85
 5.2 Results and Discussion .. 89
 5.2.1 Data Analyses ... 89
 5.2.2 Solvent selection .. 94
 5.2.3 Pre-emergence Bioassays .. 100
 5.2.4 Post-emergence Bioassays ... 123
 5.2.5 Whole Plant Bioassay .. 139
5.3 Experimental ... 142
6 Conclusions and Future Directions ... 147
7 References ... 158
8 Appendix .. 181
Abstract

The naturally occurring monoterpane 1,3,3-trimethyl-2-oxabicyclo[2.2.2]octane 1, commonly named 1,8-cineole and the major component in the leaf oil of many eucalypts, exhibits bioactivity, being potentially antimicrobial and pesticidal. A range of derivatives of 1,8-cineole and its naturally occurring isomeric analogue 1,4-cineole 2, 1-isopropyl-4-methyl-7-oxabicyclo[2.2.1]heptane, were synthesised. High-cineole eucalyptus oil, 1,8-cineole and the 1,8- and 1,4-cineole derivatives were shown to have a dose dependent pre-emergence and post-emergence herbicidal activity against radish (*Raphanus sativus* var. Long Scarlet), and annual ryegrass (*Lolium rigidum*) in laboratory bioassays. A postulated increase in activity of the ester derivatives due to metabolic cleavage into their bioactive hydroxy-cineole and carboxylic acid portions after uptake by the plant was not observed.

The role of mallee eucalypts in the rehabilitation of degraded farmland in the Western Australian wheat belt, uses of eucalyptus oil and the bioactivity of essential oils and naturally occurring terpenes, with particular emphasis on eucalyptus oil and 1,8-cineole, were reviewed. The review encompasses allelopathic and herbicidal activity, insecticidal, acaricidal and antimicrobial activity.
1,8-Cineole compounds functionalised at position 3 of the cyclohexane ring and the 1,4-
cineole derivatives were chemically synthesised whilst 2-endo-hydroxy-1,8-cineole was
obtained as the primary metabolite of a novel bacterium grown on 1,8-cineole as sole
carbon source. The bacteria were isolated by inoculating liquid growth medium
containing 1,8-cineole as carbon source with aliquots of deionised water in which
eucalyptus leaves had been stirred. Sequencing of its 16S rRNA gene identified the
bacteria as belonging to the order Sphingomonadales, family Sphingomonadaceae and
genus Sphingomonas. Growth curves for the bacterium are described and a metabolic
pathway for the microbial degradation of 1,8-cineole is confirmed. Bacteria were
cultured on a 20 L scale to provide sufficient 2-endo-hydroxy-1,8-cineole for the
herbicidal bioassays.
Acknowledgements

I would like to express my gratitude and appreciation to my supervisors, Associate Professor Allan Barton and Professor Bernard Dell for their patient support and advice throughout the completion of this project. I would also like to extend my thanks to the technical staff of the Chemistry department for their assistance. In particular, I would like to acknowledge the guidance provided by Doug Clarke on many of the chemistry laboratory aspects involved during the course of this work.

Thanks also go to my fellow postgraduate students, Joshua McManus and James Tan, with whom I have shared this journey. Their cheer and good humour helped keep things in perspective.

I would also like to acknowledge Dr Kemanthie Nandasena and Ertug Sezmis for assistance in DNA sequencing and identification of the bacterium used in this work, Dr Collette Sims for kindly proof reading Chapter 2, and Drs Kate Rowen and Damian Laird for their general assistance and guidance.

I am grateful for the financial support given by the Australian Government’s Rural Industries Research and Development Corporation by way of a scholarship, without which this work would not have been undertaken.