Vertical flow constructed wetlands for the treatment of inorganic industrial wastewater

Sergio S. Domingos

A thesis presented for the degree of Doctor of Philosophy in Environmental Engineering

Faculty of Science and Engineering

Murdoch University
WA, Australia

September 2011
I hereby declare that this thesis is my own account of my research and contains as its main content work that has not previously been submitted for a degree at any university.

X
Sergio Santos Domingos

Supervisors
Dr Stewart Dallas
Professor Goen Ho
Items derived from this study

1. Journal articles:

2. Peer reviewed conference proceedings:

3. Conference Presentations:

Domingos, SS., Dallas, S., Skillman, L. and Ho, G. (2010) Salinity impact on nitrification and on ammonia oxidising bacteria in vertical flow constructed wetlands. Presented at the 12th International Conference on Wetland systems for water pollution control. 4-9 October 2010. Venice, Italy. Submitted to Water research (Chapter 3).

Contribution to Murdoch University Research Repository:

Acknowledgements

I would like to thank my supervisors Dr Stewart Dallas and Professor Goen Ho for the guidance and support throughout my research projects, initially as an occupational trainee and later as a PhD candidate at the Environmental Technology Centre (ETC). Without their assistance, ability to secure research grants and firm industry partnerships this project would not have been possible. A special thanks to Dr Lucy Skillman for her help in the microbial and molecular analyses. Lucy has been my unofficial supervisor from day one! It has been a pleasure to work under the supervision of you three.

My immense gratitude to Dr Martin Anda, who accepted me as an Occupational Trainee at Murdoch and introduced me to Stewart and Goen. Without Martin’s enthusiasm I would not have come to Murdoch in the first place.

CSBP Limited supported this project by providing me an Industry Partnership Scholarship and invaluable in-kind support. Thanks to CSBP’s former environmental manager Cameron Schuster for playing a part in the partnership and to the environmental and laboratory team, in particular Mark Germain, Stephanie Felstead and Glenn Bibby, who were constantly answering questions and sharing wetland data. Being able to participate and contribute to the operation of large scale wetland systems has been a vital part of my PhD experience. Managing water and wastewater in large industrial premises is far from an easy task!

Murdoch University generously supported my candidature by waiving my tuition fees, granting me a PhD Completion Scholarship and a Conference Travel Award. I feel privileged for having had access to all forms of financial and technical support in a great work environment. Thank You.

Thanks to my student colleagues Robbie Cocks, Dr Noraisha Oyama, John Hunt, Mario Schmack, Beth Strang, Dr Rory Donnelly, Jatin Kala, Wendy Vance, Dr Robert Hughes, Dr Jason Levitan, Dr Ka Yu Cheng, Sebastian von Eckstaedt, Suwat Suwannoppadol, Linda Davies and others for the moments we shared the joys, frustrations and excitement of our PhD journeys. Thanks to Dr William Ditcham and Dr Kuruvilla Mathew for their advice on academic and philosophical matters. David
Berryman and Frances Brigg provided great technical support during the 1.5 years I was working at the State Agricultural Biotechnology Centre (SABC).

I am very grateful to my family in Brazil for supporting my decision to come, work and study in Australia and making the dream financially possible. They have been patiently waiting for the submission date; I bet they never thought a 6 month traineeship would take so long! Thanks to Dorine and Niomi for accepting Aline and me as their family and showing us Aussie life!

Finally, a huge thanks to my wife Aline, who has been extremely compassionate and patient over the whole process, always reminding me that there was life beyond the PhD.

To all of you who contributed, my deepest gratitude.

Project supported by CSBP Ltd.
Kwinana Beach Road (PO Box 345) Kwinana WA 6966
Abstract

The focus of this thesis is primarily on nitrogen removal and secondarily on heavy metal accumulation in unsaturated and saturated vertical flow constructed wetlands (VFCWs) treating inorganic industrial wastewater. This thesis is divided into an experimental component and a case study component. Three research themes are presented within the scope of this thesis. The first theme involves the study of nitrification and denitrification and the characterisation of the respective bacterial communities in unsaturated and semi-saturated VFCWs. The identification of functional bacteria with the aid of polymerase chain reaction (PCR) based molecular techniques and the effect of salinity (NaCl) on these bacterial groups is also contained within this theme. The second theme is the use of low cost carbon sources to improve denitrification and nitrogen removal in saturated VFCWs. The third theme of this study is the performance of large scale VFCWs operating at CSBP Ltd, a chemical and fertiliser manufacturer based in Kwinana, Western Australia. The performance of the systems is assessed in regards to nitrogen and heavy metal removal. This theme also covers design and operational recommendations for improved nitrogen removal.

Laboratory scale VFCWs planted with Schoenoplectus validus were used to assess the impact of increasing salinity (up to 40gNaCl/L) on nitrification and on ammonia oxidising bacteria (AOB). Ammonia removal above 90% could be achieved in the fresh and saline wetlands when these were operated under a hydraulic loading rate of 11cm/d. This represented a removal rate in the order of 12gNH₃-N/m²/d. The gradual increase in salinity to 40gNaCl/L did not impact ammonia oxidation whereas the sudden increase (shock load) to 30gNaCl/L negatively impacted ammonia removal in the short term. Investigation of the microbial populations by terminal restriction fragment length polymorphism (T-RFLP) performed along with cloning and sequencing revealed that the increase in salinity selected for Nitrosomonas sp Nm 107-like (Nitrosococcus mobilis) and Nitrosospira sp 9SS1-like (Nitrosospira multiformis) AOB while other groups were eliminated or only present in very low proportions.

Nitrification and denitrification were further studied and the AOB and denitrifying bacterial (DB) community analysed in unplanted, fresh and saline, semi-saturated VFCWs dosed with acetic acid as carbon source. The semi-saturated design allowed nitrification to occur in the unsaturated sand layer and denitrification to occur in the saturated drainage layer where organic carbon was added, resulting in a high nitrogen removal. Nitrogen removal rates were on average 13.6gN/m²/d and 12.7gN/m²/d for the fresh and saline systems, respectively. Total nitrogen removal was significantly higher in the fresh system than in the saline system. The presence of salt, however, did not impact nitrate or COD removal and similar nitrate and COD concentrations were obtained in both wetlands. The gram-negative DB were also similar in both wetlands and dominated by representatives of the α and β-proteobacteria.
The feasibility of using carbon rich wastewater from a soft drink manufacturer (COD = 70,000mg/L), as exogenous carbon source to improve denitrification and nitrogen removal in saturated VFCWs treating high nitrate wastewater was tested. The addition of the carbon rich wastewater significantly increased nitrate removal from 23% to 65% and total nitrogen from 53% to 76%. Neither effluent ammonia nor effluent COD were affected by the addition of the carbon rich wastewater. Combining industrial wastewaters to improve treatability has proven to be cost effective and good example of industrial synergy with both economical and environmental benefits.

The case study covered the full scale treatment wetlands at CSBP Ltd. Firstly, heavy metal distribution, nitrogen removal performance and the AOB were analysed in the 1.3ha saturated surface VFCW, which has been operational since 2004. Secondly, the design rationale of two parallel nitrifying VFCWs, 0.8ha each, commissioned at CSBP Ltd in 2009 is described and the results from the first year of operation analysed.

The distribution of bioavailable Cu and Zn in the top sediment layer followed a horizontal profile with significantly higher concentrations near the inlet pipe than at the farthest location. The average total Cu concentration in the sediment at the 2m location has reached the 65mg/kg trigger value suggested by the Interim Sediment Quality Guidelines (ANZEEC 2000), indicating that increasing Cu levels could become toxic to plants and bacteria. From September 2008 to October 2009, the overall NH₃-N and TN removal rates were 1.2gNH₃-N/m²/d and 1.3gTN/m²/d, respectively. The 1.3ha wetland was operated in a sequencing batch mode, receiving highly fluctuating batch volumes and nitrogen concentrations. The majority of AOB sequences obtained were most similar to *Nitrosomonas* sp., while *Nitrosospira* sp. were less frequent.

The two VFCWs added to the treatment train in 2009 were designed assuming an NH₃-N removal rate of 4.5gNH₃-N/m²/d. Monitoring of the first year of data revealed that the cells operated under hydraulic and mass overloads. Ammonia oxidation was slightly higher than initially anticipated with the overall removal rate for the new cells being 5gNH₃-N/m²/d. Since commissioning of the new cells ammonia discharges have been greatly reduced.

Overall, this thesis has demonstrated that vertical flow constructed wetlands can be effectively applied for the treatment of inorganic industrial wastewaters containing nitrogen. These systems have proven to harbour diverse salt tolerant nitrogen transforming bacteria, allowing them to operate reliably under varying salinities.
Abbreviations

AMO – ammonia monooxygenase
AOB – ammonia oxidising bacteria
BOD – biochemical oxygen demand
C – control
COD – chemical oxygen demand
CW – constructed wetland
DB – denitrifying bacteria
DO – dissolved oxygen
EC – electrical conductivity
FWS – free water surface
HF – horizontal flow
HLR – hydraulic loading rate
HRT – hydraulic retention time
NOB – nitrite oxidising bacteria
ORP – oxidation-reduction potential
OTU – operational taxonomic unit
PCR – polymerase chain reaction
SBR – sequencing batch reactor
SDW – soft drink manufacturer wastewater
SND – simultaneous nitrification and denitrification
T – treatment
TN – total nitrogen
TOC – total organic carbon
TP – total phosphorus
T-RFLP – terminal restriction fragment length polymorphism
TSS – total suspended solids
VF – vertical flow
VFCW – vertical flow constructed wetland
Table of Contents
Items derived from this study .. ii
Acknowledgements .. iii
Abstract .. v
Abbreviations ... vii
Chapter 1: Introduction .. 1
 1.1 Industrial wastewaters ... 1
 1.2 Constructed wetlands for wastewater treatment .. 2
 1.3 Benefits of using constructed wetlands ... 3
 1.4 Scope of this thesis ... 5
Chapter 2: Literature Review ... 8
 2.1 Initial constructed wetland research ... 8
 2.2 Types of constructed wetlands .. 8
 2.3 Common uses of constructed wetlands .. 11
 2.4 Pollutant removal mechanisms in constructed wetlands .. 13
 2.5 Treatment of saline wastewaters .. 33
 2.6 Summary ... 38
Chapter 3: Salinity impact on nitrification and on the ammonia oxidising bacterial community in vertical flow constructed wetlands treating inorganic industrial wastewater .. 39
 3.1 Introduction .. 39
 3.2 Materials and Methods ... 40
 3.3 Results .. 50
 3.4 Discussion .. 73
 3.5 Conclusions .. 79
Chapter 4: Nitrification and denitrification in semi-saturated sand filters: Effect of salinity and dosing of external carbon ... 81
 4.1 Introduction .. 81
 4.2 Materials and Methods ... 82
 4.3 Results and discussion .. 87
 4.4 Conclusions .. 99
Chapter 5: Combining industrial wastewaters to improve nitrogen removal in constructed wetlands: Effect of external carbon on denitrification ... 100
 5.1 Introduction .. 100
 5.2 Materials and Methods ... 102
 5.3 Results and Discussion .. 104
 5.4. Conclusions and Outlook ... 112