Pain, motion sickness and migraine: effect on symptoms and scalp blood flow

Anna Cuomo-Granston

This thesis is presented for the degree of

DOCTOR OF PHILOSOPHY

Faculty of Health Sciences, Psychology, Murdoch University

Western Australia

2009
DECLARATION

I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution

Anna Cuomo-Granston
ABSTRACT

Migraine, a neurovascular disorder, is associated with disturbances in brain stem activity during attacks. Interictal persistence of these disturbances might increase vulnerability to recurrent attacks of migraine. To explore this possibility, effects of motion sickness and pain on migrainous symptoms and extracranial vascular responses were investigated in 27 migraine sufferers in the headache-free interval, and 23 healthy age/sex matched controls.

Symptoms of migraine and motion sickness are remarkably similar. As both maladies involve reflexes that relay in the brain stem, they most probably share the same neural circuitry. Furthermore, migraineurs are usually susceptible to motion sickness and, conversely, motion sickness-prone individuals commonly experience migraine. Participants in the present study were exposed to optokinetic stimulation (OKS), a well-established way of inducing symptoms of motion sickness in susceptible individuals.

Sensitivity to painful stimulation of the head and hand was also explored. Head pain is a hallmark of a migraine attack and cutaneous allodynia has been observed elsewhere in the body during attacks. The trigeminal nerve is associated with head pain in migraine, and trigeminal activity evokes reflexes that relay in the brain stem. To stimulate the trigeminal nerve, ice was applied to the temple. To stimulate nociceptors elsewhere in the body the participant immersed their fingers and palm in ice-water.

Procedures used in this study were physically stressful and probably psychologically stressful. The impact of stress in relation to the development of
symptomatic and vascular responses, particularly anticipatory stress-responses, was explored.

This research involved one central experiment that consisted of six experimental conditions. On separate occasions participants were exposed to optokinetic stimulation and painful stimulation of the head or limb, individually and in combination.

In migraine sufferers, symptomatic responses were enhanced during all procedures involving OKS and during temple pain after OKS, in the presence of residual motion sickness. During trigeminal stimulation independent of OKS, headache initially developed followed by nausea as the procedure progressed. In contrast, symptoms barely developed in controls during any of the six procedures except for slight dizziness, self-motion and visual-illusion during conditions involving OKS, and slight nausea when the temple was painfully stimulated during OKS and during OKS alone. Trigeminal stimulation during OKS intensified nausea and headache in migraine sufferers compared to during OKS alone or limb pain during OKS. However, the remaining symptomatic ratings were not affected by temple pain during OKS, suggesting a specific association between nausea and head pain. It may be that these cardinal symptoms compound one another during a migraine attack. Enhanced symptomatic responses in migraine sufferers during the headache interval may indicate activation of hypersensitive neural pathways that mediate symptoms of motion sickness or migraine. Migraineurs found procedures generally more unpleasant, and ice-induced pain ratings more intense and unpleasant, than controls, which may further indicate hyperexcitable nociception in this group, or a difference in their criterion of discomfort.
Vascular responses, particularly during OKS alone, and during painful stimulation independent of OKS, were greater in migraine sufferers than in controls. The added stress of painful stimulation during OKS appeared to boost facial blood flow in controls to approach levels obtained in migraine sufferers. Enhanced vasodilatation was observed in migraineurs prior to painful stimulation, presumably due to anticipatory anxiety.

For both groups ipsilateral vascular responses were greater than contralateral responses when the hand was painfully stimulated. During limb pain before OKS asymmetry was minimal in migraine sufferers but more apparent in controls. An enhanced stress response in migraineurs may have drawn ipsilateral and contralateral responses closer together.

The development of symptoms during the procedures of this study provides an insight into how symptoms might develop sequentially in a migraine attack. Once the headache is in motion, nausea and headache may mutually exacerbate one another. In turn, trigemino-vascular responses and stress appear to be associated with the migraine crisis. Given the interactive nature of symptomatic, vascular, and stress responses, it may be more effective to target multiple, rather than individual, symptoms, in prophylactic or acute chemical and psychological interventions.
Publications related to this thesis

Part of this thesis was platform presented at an international conference in London, United Kingdom. Refer to publications related to this thesis, Granston and Drummond (2002), Appendix 14, page 443-444. Slides illustrating the content of this PowerPoint presentation are presented in Appendix 14, pages 459-464. *
Other publications in response to this thesis

See Appendix 14, pages 418-464, for copies of publications *

* Copies not available in the online digital version of this thesis
CONTENTS

Declaration ii
Abstract iii
Publications and presentation related to this thesis vi
Acknowledgements xxxvi

CHAPTER ONE

INTRODUCTION

The burden of migraine 1
 Individual and community costs 1
 Prevalence 3
 Other health related concerns 5

Migraine has a long history with many questions that remain unanswered 7

Aim of the study 9

Chapter outline 10

Diagnosis 11
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The natural life history of migraine and the progression of a migraine attack</td>
<td>18</td>
</tr>
<tr>
<td>Natural history of migraine/prognosis</td>
<td>18</td>
</tr>
<tr>
<td>Natural progression of a migraine attack</td>
<td>20</td>
</tr>
<tr>
<td>Premonitory period</td>
<td>24</td>
</tr>
<tr>
<td>Prodrome/Aura</td>
<td>30</td>
</tr>
<tr>
<td>Headache and resolution</td>
<td>36</td>
</tr>
<tr>
<td>Postdrome/recovery</td>
<td>39</td>
</tr>
<tr>
<td>Headache interval</td>
<td>42</td>
</tr>
<tr>
<td>Risk factors associated with increased vulnerability to migraine</td>
<td>44</td>
</tr>
<tr>
<td>Predisposing factors</td>
<td>45</td>
</tr>
<tr>
<td>Genetics</td>
<td>45</td>
</tr>
<tr>
<td>Dysfunction of the autonomic nervous system</td>
<td>48</td>
</tr>
<tr>
<td>Molecular basis of migraine susceptibility</td>
<td>50</td>
</tr>
<tr>
<td>Stress and biochemical responses</td>
<td>52</td>
</tr>
<tr>
<td>Mitochondria and magnesium</td>
<td>52</td>
</tr>
<tr>
<td>Endogenous opioid peptides</td>
<td>54</td>
</tr>
<tr>
<td>The migraine predisposition, biochemical and metabolic dysfunction, and stress: a synthesis</td>
<td>58</td>
</tr>
<tr>
<td>Hormones</td>
<td>58</td>
</tr>
<tr>
<td>The association between gastrointestinal disturbances and migraine</td>
<td>61</td>
</tr>
<tr>
<td>Early signs of gastrointestinal hypersensitivity</td>
<td>61</td>
</tr>
<tr>
<td>The association between motion sickness and migraine</td>
<td>62</td>
</tr>
<tr>
<td>Vestibular instability</td>
<td>63</td>
</tr>
<tr>
<td>Vascular reactivity during and between attacks</td>
<td>65</td>
</tr>
</tbody>
</table>
Sensory hyperacuitity 67

Hyperalgesia 71

Normal pain vs migraine pain 71

Ictal pain 72

Interictal pain 73

Altered pain thresholds in migraine sufferers 75

Precipitating factors 80

Triggers in general 80

Stress: a commonly reported migraine trigger 82

Personalty traits, psychiatric disorders and stress 85

Triggers in perspective 88

Mechanisms of migraine 91

Brainstem involvement 91

Trigeminovascular system and migraine 91

Sensory and trigeminal stimuli 95

Influence of the stress-response 96

Characteristics peculiar to those vulnerable to migraine 97

Proposed mechanisms underlying susceptibility to recurring attacks 98

of migraine in migraine sufferers 98

General overview of this thesis 99
CHAPTER TWO

METHODOLOGICAL CONSIDERATIONS

Questionnaire
 Headache Triggers
 Motion Sickness Items
Subjective Measures
Optokinetic Stimulation
Nociceptive Stimuli: ice

CHAPTER THREE

METHOD

Participants
Apparatus
 Questionnaire
 Headache Diary
 Subjective Measures
 Nociceptor Stimulus
 Optokinetiic Drum
 Physiological Equipment
 Pulse Volume
Testing area
Research Design and Analysis
CHAPTER FOUR

QUANTIFICATION OF DATA

Statistical approach for each condition

Symptom ratings

Pulse amplitude

Condition comparisons

Response during OKS

Response independent of OKS
CHAPTERS FIVE to TWELVE

RESULTS AND DISCUSSION PREAMBLE 129

CHAPTER FIVE

Condition 1: Optokinetic stimulation (OKS) alone 130

RESULTS 131

Symptom ratings 131
Pulse Amplitude 135

DISCUSSION 138

Effects on symptomatic responses 138
Summary of major findings 138
Discussion of effects on symptomatic responses 138
Effects on pulse amplitude 139
Summary of major findings 139
Discussion of effects on pulse amplitude 139
CHAPTER SIX

Condition 2: Ice on temple after Optokinetic stimulation 141

RESULTS 142

Symptom ratings 142
Pulse Amplitude 146

DISCUSSION 149

Effects on symptomatic responses 149
Summary of major findings 149
Discussion of effects on symptomatic responses 150
Effects on pulse amplitude 152
Summary of major findings 152
Discussion of effects on pulse amplitude 152

CHAPTER SEVEN

Condition 3: Ice on temple before optokinetic stimulation 154

RESULTS 155

Symptom ratings 155
Pulse Amplitude 159
DISCUSSION

Effects on symptomatic responses
 Summary of major findings
 Discussion of effects on symptomatic responses

Effects on pulse amplitude
 Summary of major findings
 Discussion of effects on pulse amplitude

CHAPTER EIGHT

Condition 4: Ice on temple during optokinetic stimulation

RESULTS

Symptom ratings
 Pulse Amplitude

DISCUSSION

Effects on symptomatic responses
 Summary of major findings
 Discussion of effects on symptomatic responses
CHAPTER NINE

Condition 5: Hand in ice-water before optokinetic stimulation

RESULTS

- Symptom ratings
- Pulse Amplitude

DISCUSSION

- Effects on symptomatic responses
- Summary of major findings
- Discussion of effects on symptomatic responses
- Effects on pulse amplitude
- Summary of major findings
- Discussion of effects on pulse amplitude
CHAPTER TEN

Condition 6: Hand in ice-water during optokinetic stimulation 191

RESULTS 192

Symptom ratings 192
Pulse Amplitude 199

DISCUSSION 202

Effects on symptomatic responses 202
Summary of major findings 202
Discussion of effects on symptomatic responses 203
Effects on pulse amplitude 204
Summary of major findings 204
Discussion of effects on pulse amplitude 204

CHAPTER ELEVEN

Comparison of Conditions during OKS:

1 (OKS alone), 4 (Ice on temple during OKS) and
6 (Hand in ice-water during OKS) 206
RESULTS

Symptom ratings

Pulse Amplitude

DISCUSSION

Effects on symptomatic responses

Summary of major findings

Ice on temple during OKS vs OKS alone
(Condition 4 vs 1, respectively)

Ice on temple during OKS vs Hand in ice-water during OKS
(Condition 4 vs 6, respectively)

Discussion of effects on symptomatic responses

Ice on temple during OKS vs OKS alone
(Condition 4 vs 1, respectively)

Ice on temple during OKS vs Hand in ice-water during OKS
(Condition 4 vs 6, respectively)

Effects on pulse amplitude

Summary of major findings

Ice on temple during OKS vs OKS alone
(Condition 4 vs 1, respectively)
Ice on temple during OKS vs Hand in ice-water during OKS
(Condition 4 vs 6, respectively) 222

Discussion of effects on pulse amplitude 223

Ice on temple during OKS vs OKS alone
(Condition 4 vs 1, respectively) 223

Ice on temple during OKS vs Hand in ice-water during OKS
(Condition 4 vs 6, respectively) 224

CHAPTER TWELVE

Comparison of Conditions in the absence of OKS:

2 (Ice on temple after OKS), 3 (Ice on temple before OKS)
and 5 (Hand in ice-water before OKS) 225

RESULTS 227

Symptom ratings 227

Ice on temple before vs after OKS
(Condition 3 vs 2, respectively) 229

Temple pain vs limb pain
(Condition 3 vs 5, respectively) 230

Pulse Amplitude 232
DISCUSSION

Effects on symptomatic responses

Summary of major findings

Ice on temple before vs after OKS
(Condition 3 vs 2 respectively)

Temple pain vs limb pain
(Condition 3 vs 5, respectively)

Discussion of effects on symptomatic responses

Ice on temple before vs after OKS
(Condition 3 vs 2 respectively)

Temple pain vs limb pain
(Condition 3 vs 5, respectively)

Effects on pulse amplitude

Summary of major findings

Ice on temple before vs after OKS
(Condition 3 vs 2 respectively)

Temple pain vs limb pain
(Condition 3 vs 5, respectively)

Discussion of effects on pulse amplitude
CHAPTER THIRTEEN

GENERAL DISCUSSION

13.1. Symtomatic responses

Discussion of findings

Symptoms generally develop more readily in migraine sufferers than in controls during OKS

Mechanism of nausea

Multiple pathways including nociceptive may converge on the NTS

OKS-induced motion sickness and impact on nociception

Nausea in migraine and motion sickness

Motion sickness in migraine sufferers

Convergent neural pathways
Dizziness/vertigo in migraine 252
Symptoms of motion sickness as a possible defense response 253
Key points: OKS-induced symptoms 255

Trigeminal stimulation increases nausea and headache more readily in migraine sufferers than in controls 256
Anatomy of the trigeminal nerve 256
Trigeminal nerve stimulation in relation to migraine headache 258
Effects of trigeminal stimulation on nausea 259
Neurophysiology of nociception 260
Neurophysiology of migraine 262
Neurogenic inflammation 263
Hyperexcitable nociception in migraine sufferers 265
Key points: role of the trigeminal nerve in the development of symptoms in migraine sufferers 266

Hyperexcitability in trigeminal and other brain stem nuclei in migraine sufferers interictally 266
Symptoms developed more readily in migraine sufferers than in controls when the trigeminal nerve was painfully stimulated during OKS 267
Symptoms develop more readily in migraine sufferers than in controls during trigeminal stimulation in the presence of residual motion sickness 269
Sensory hyperacuity in migraine 270

Neural wind-up 271

Hypersensitive /thermoregulation in migraine sufferers 272

Key points: hyperexcitability in trigeminal brain stem nuclei in migraine sufferers 273

Interaction between head pain and nausea 273

Observations during limb pain:

Symptoms generally developed more readily in migraine sufferers than in controls when the hand was painfully stimulated during OKS 276

Pain perception was greater in migraine sufferers than in controls 277

Nociception 278

Central pain modulation 279

Key points: effects of painful stimulation of the limb in the development of symptoms in migraine sufferers 281

Psychophysical report of pain 282

13.2. Pulse amplitude 285

Discussion of findings 285
Defense response

- Trigeminovascular response as a possible defense response 287
- Defense response during OKS 288
- Stressful procedures and the defense response 292
- Key points relevant to the defense response and pulse amplitude change 293

Frontotemporal vascular response to ice applied to the temple 293

- Trigeminovascular response in migraine sufferers 294
- Link between vascular changes and headache 295
- Extracranial blood flow fluctuations 297
- Extracranial vasculature more reactive in migraine sufferers 298
- Head pain does not appear to be related to extracranial vasodilatation 300
- Key points: trigeminovascular reflex and pulse amplitude change 301

Faulty pain processing in migraine sufferers may have effected pulse amplitude

Generally 302

- Possible sympathetic and parasympathetic dysfunction in migraine 302
Possible autonomic dysfunction in migraine

Mechanisms regulating cutaneous blood flow

Asymmetric vascular response during limb pain

Key points: faulty pain processing may have effected pulse amplitude

13.3. General methodological issues associated with the Project: strengths and limitations

Pre testing criteria

Extraneous procedural effects

Selection of procedures

Measurement of pulse amplitude

Self-report issues

Quantification of data

Organisation of sessions and conditions

13.4. Further research

Fear of pain

The stress response
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuropeptide release</td>
<td>314</td>
</tr>
<tr>
<td>Quality of pain</td>
<td>315</td>
</tr>
<tr>
<td>Painful stimulation: procedural alternatives</td>
<td>316</td>
</tr>
<tr>
<td>Difuse noxious inhibitory controls (DNIC)</td>
<td>317</td>
</tr>
<tr>
<td>Loss of appetite</td>
<td>318</td>
</tr>
<tr>
<td>Hyperventilation in relation to migraine and motion</td>
<td>319</td>
</tr>
<tr>
<td>Serotonin and migraine</td>
<td>321</td>
</tr>
</tbody>
</table>

13.5. Conclusions

13.6. Concluding comments: findings of the present study in relation to contemporary understanding of migraine
TABLES

Table 1.1. ICHD-II diagnostic criteria for migraine with aura 14

Table 1.2. ICHD-II diagnostic criteria for migraine without aura 15

Table 1.3. ICHD-II diagnostic criteria of subclassifications of migraine and ICD-10NA codes 16

Table 3.1. Number of participants in each testing order 115

Table 5.1. Main effect and interaction F, p, and df values from repeated-measures ANOVA for each rating.

Condition 1. 135

Table 5.2. Main effect and interaction F, p, and df values from repeated-measures ANOVA for pulse amplitude change.

Condition 1. 137

Table 6.1. Main effect and interaction F, p, and df values from repeated-measures ANOVA for each rating.

Condition 2. 146

Table 6.2. Main effect and interaction F, p, and df values from repeated-measures ANOVA for pulse amplitude change.

Condition 2. 148

Table 7.1. Main effect and interaction F, p, and df values from repeated-measures ANOVA for each rating.

Condition 3. 159

Table 7.2. Main effect and interaction F, p, and df values from repeated-measures ANOVA for pulse amplitude change.

Condition 3. 161
Table 8.1. Main effect and interaction F, p, and df values from repeated-measures ANOVA for each rating.

Condition 4. 171

Table 8.2. Main effect and interaction F, p, and df values from repeated-measures ANOVA for pulse amplitude change.

Condition 4. 173

Table 9.1. Main effect and interaction F, p, and df values from repeated-measures ANOVA for each rating.

Condition 5. 183

Table 9.2. Main effect and interaction F, p, and df values from repeated-measures ANOVA for pulse amplitude change.

Condition 5. 186

Table 10.1. Main effect and interaction F, p, and df values from repeated-measures ANOVA for each rating.

Condition 6. 198

Table 10.2. Main effect and interaction F, p, and df values from repeated-measures ANOVA for pulse amplitude change.

Condition 6. 201

Table 11.1. Main effect and interaction F, p, and df values from repeated-measures ANOVA during OKS alone {condition 1}, ice to temple during OKS {condition 4}, hand in ice-water during OKS {condition 6}, for nausea, body temperature, dizziness, drowsiness, headache, unpleasantness, self-motion and visual-illusion. 213
Table 11.2. Main effect and interaction F, p, and df values from repeated-measures ANOVA during OKS alone (condition 1), ice to temple during OKS (condition 4), hand in ice-water during OKS (condition 6), for ice-induced intensity and ice-induced unpleasantness.

Table 11.3. Main effect, interaction and simple contrast F, p, and df values from repeated-measures ANOVA of mean pulse amplitude during OKS alone (condition 1), ice to temple during OKS (conditions 4), hand in ice-water during OKS (conditions 6), 30 seconds after ice stimulation (temple, hand) during OKS and time equivalents for OKS alone.

Table 11.4. Means and standard deviations during OKS alone, ice to the temple during OKS, and hand in ice-water during OKS, of pulse amplitude 30 seconds after ice stimulation (temple, hand) during OKS and time equivalents for OKS alone.

Table 12.1. Main effect and interaction F, p, and df values from repeated-measures ANOVA during ice to temple after OKS, ice to temple, hand in ice-water, for nausea, body temperature, dizziness, drowsiness, headache, unpleasantness.

Table 12.2. Main effect and interaction F, p, and df values from repeated-measures ANOVA during ice to temple after OKS, ice to temple, hand in ice-water, for ice-induced intensity and ice-induced unpleasantness.
Table 12.3. Main effect, interaction and simple contrast F, p, and df values from repeated-measures ANOVA of mean pulse amplitude during ice to temple after OKS, ice to temple, hand in ice-water, 30 seconds after ice stimulation (temple, hand).

Table 12.4. Means and standard deviations during ice to temple after OKS, ice to temple, hand in ice-water, of pulse amplitude 30 seconds after ice stimulation (temple, hand).
FIGURES

Figure 1.1. Common symptoms during the progression of a complete/typical migraine attack 22

Figure 1.2. Average duration of each phase of a migraine attack 23

Figure 3.1. Positioning of pulse transducers on temple 113

Figure 3.2. Optokinetic stimulation and trigeminal stimulation after optokinetic stimulation 118

Figure 3.3. Trigeminal stimulation before optokinetic stimulation and trigeminal stimulation during optokinetic stimulation 121

Figure 3.4. Non-specific painful stimulation and, non-specific painful stimulation during optokinetic stimulation 124

Figure 5.1. A-F. Symptom ratings (+ SEM) for migraineurs and controls over 11 time points (every 2 minutes from baseline to minute 20). Condition 1. 133

Figure 5.1. G-H. Symptom ratings (+ SEM) for migraineurs and controls over 7 time points (every 2 minutes from baseline to minute 20). Condition 1. 134

Figure 5.2. Pulse amplitude change (+ SEM) for migraineurs and controls over 11 time points (30 second sample increments from baseline, at minutes 3 ½, 4, 4 ½, 7 ½, 8, 8 ½, 11 ½, 12, 12 ½, 14 ½, 19 ½). Condition 1. 136

Figure 6.1. A-F. Symptom ratings (+ SEM) for migraineurs and controls over 11 time points (every 2 minutes from baseline to minute 20). Condition 2. 143
Figure 6.1.G-H. Symptom ratings (± SEM) for migraneurs and controls over 9 time points (every 2 minutes from ice 1).
Condition 2.

Figure 6.2. Pulse amplitude change (± SEM) for migraneurs and controls over 11 time points (30 second samples: before, during and after ice application {3 trials}, and after 3 and 8 minutes of recovery. Condition 2.

Figure 7.1.A-F. Symptom ratings (± SEM) for migraneurs and controls over 11 time points (every 2 minutes from baseline to minute 20). Condition 3.

Figure 7.1.G-H. Symptom ratings (± SEM) for migraneurs and controls over 9 time points (every 2 minutes from ice 1).
Condition 3.

Figure 7.2. Pulse amplitude change (± SEM) for migraneurs and controls over 11 time points (30 second samples: before, during and after ice application {3 trials}, and after 3 and 8 minutes of recovery. Condition 3.

Figure 8.1.A-F. Symptom ratings (± SEM) for migraneurs and controls over 11 time points (every 2 minutes from baseline to minute 20). Condition 4.

Figure 8.1.G-H. Symptom ratings (± SEM) for migraneurs and controls over 9 time points (every 2 minutes from ice 1).
Condition 4.
Figure 8.1.I-J. Symptom ratings (± SEM) for migraineurs and controls over 7 time points (every 2 minutes from ice 1).
Condition 4. 170

Figure 8.2. Pulse amplitude change (± SEM) for migraineurs and controls over 11 time points (30 second samples: before, during and after ice application {3 trials}, and after 3 and 8 minutes of recovery. Condition 4. 172

Figure 9.1.A-F. Symptom ratings (± SEM) for migraineurs and controls over 11 time points (every 2 minutes from baseline to minute 20). Condition 5. 180

Figure 9.1.G-H. Symptom ratings (± SEM) for migraineurs and controls over 9 time points (every 2 minutes from ice 1).
Condition 5. 182

Figure 9.2. Pulse amplitude change (± SEM) for migraineurs and controls over 11 time points (30 second samples: before, during and after ice application {3 trials}, and after 3 and 8 minutes of recovery. Condition 5. 185

Figure 10.1.A-F. Symptom ratings (± SEM) for migraineurs and controls over 11 time points (every 2 minutes from baseline to minute 20). Condition 6. 195

Figure 10.1.G-H. Symptom ratings (± SEM) for migraineurs and controls over 9 time points (every 2 minutes from ice 1).
Condition 6. 196
Figure 10.1.I-J. Symptom ratings (+ SEM) for migraineurs and controls over 7 time points (every 2 minutes from ice 1). Condition 6. 197

Figure 10.2. Pulse amplitude change (+ SEM) for migraineurs and controls over 11 time points (30 second samples: before, during and after ice application {3 trials}, and after 3 and 8 minutes of recovery. Condition 4. 200

Figure 11.1.A-H. Symptomatice ratings: means + SEM for migraineurs and controls for OKS alone, ice to the temple during OKS, hand in ice-water during OKS. 209

Figure 11.1.I-J. Symptomatic ratings: means + SEM for migraineurs and controls for ice to the temple during OKS and hand in ice-water during OKS. 211

Figure 11.2. Mean ipsilateral and contralateral pulse amplitude change to ice stimulation (temple, hand), and average of left and right sides for OKS alone. Pulse amplitude change (+ SEM) for migraineurs and controls 30 seconds after ice stimulation and time equivalents for OKS alone. 214

Figure 12.1.A-H. Symptomatic ratings: means ± SEM for migraineurs and controls for ice to the temple after OKS, ice to the temple and hand in ice-water. 227

Figure 12.2. Mean ipsilateral and contralateral pulse amplitude change (+ SEM) to ice stimulation (temple, hand) for migraineurs and controls 30 seconds after ice stimulation. 232
APPENDICES

Appendices Contents 328
Appendix 1. Consent form 329
Appendix 2. Questionnaire 330
Appendix 3. Headache diary 338
Appendix 4. Rating scales and recording form 345
Appendix 5. Optokinetic drum and positioning of participant 350
Appendix 6. Preliminary results condition 1 (OKS alone) 351
Appendix 7. Preliminary results condition 2 (ice to temple after OKS) 361
Appendix 8. Preliminary results condition 3 (ice to temple before OKS) 371
Appendix 9. Preliminary results condition 4 (ice to temple during OKS) 381
Appendix 10. Preliminary results condition 5 (hand in ice-water before OKS) 393
Appendix 11. Preliminary results condition 6 (hand in ice-water before OKS) 403
Appendix 12. Analyses condition 2 (ice to temple after OKS) using baseline from condition 1 (OKS alone) 415
Appendix 13. Withdrawals from drum 417
Appendix 14. Publications and presentation related to thesis 418

REFERENCES 465
Acknowledgements

At the commencement of my candidature, I met with my supervisor, Professor Peter Drummond to discuss aspects of this forthcoming research. The pathophysiology of migraine, which in many ways despite the groundbreaking and promising research to date, still remains an enigma. The opportunity to contribute practically toward the knowledge-base in understanding this disease was an exciting challenge, which I eagerly looked forward to starting. I was also daunted at the mere thought of the research journey that lay ahead of me.

However, thanks to Professor Drummond’s unfailing and expert guidance, and calming influence during times of pressure, my enthusiasm and excitement never waned. Learning to become a researcher has been the pinnacle of my career to date, and in many ways, now that my thesis has been submitted; I suspect that I will miss the whole researcher-experience terribly.

Professor Drummond is highly regarded internationally across disciplines and is a prolific contributor to the research literature. Consequently I feel privileged to have been under his tutorage, as my association with him has no doubt had a positive impact on my development as a researcher. Apart from being a prominent neuroscientist he is also an adept clinical psychologist and academic. His talents were formally recognized by Murdoch University when he was recently awarded the ‘Vice-Chancellor’s Excellence in Supervision Award’.
Professor Drummond was always accessible throughout my candidature regardless of how pressured was his timetable. He was consistently focused on the issues at hand, an impeccable critic, communicated his ideas clearly and encouraged lateral thinking. Professor Drummond encouraged me to present findings of this study to international and local audiences. He also encouraged me to contribute sections of my thesis findings for publication in various prestigious journals, which helped me to become increasingly familiar with my results, their interpretation, and how to communicate them orally and to a written publishable standard. From a personal viewpoint, my association with Professor Drummond these past years has instilled in me a desire for the pursuit of excellence, and taught me that a daunting task is only as big as the next manageable step ahead of you.

Financial assistance by way of a scholarship from Murdoch University Research and Development Board is appreciatively acknowledged. Other financial assistance included imbursement to participants for their assistance, and also the Research Student Conference Travel Award, towards expenses to attend an international conference in Britain, where I presented sections of this thesis. Special thanks to Karen Olkowski (Department Manager) and Emma Thorp - your professionalism and people skills made a big difference.

I gratefully acknowledge Murdoch University, Faculty of Health Sciences, Psychology technicians (David Nicholson, Man Trac, Francis Lee) for their expert technical assistance when needed.
Early in my research, during the testing of participants I shared our laboratory with a number of colleagues – all busy collecting data for their own Ph.D.’s. I thank each of them for their patience, consideration, mutual support and assistance as we worked around one another to complete our individual data collections. I particularly enjoyed the many enjoyable chats and coffees with Shiree Treleavan-Hassard (colleague and friend), when we weren’t busy testing, about the neurology of migraine and psychophysiological recording!

A heartfelt thank you goes to my family - my parents, and Sandra, Michael, and Marisa for their encouragement, enthusiasm, and faith in me. I also sincerely thank Ilma, an especially dear friend, for her encouragement and love. Also, cheers to my very good friends Leonie and Kevin, and Betty and Harry, your enjoyable and positive company always kept me in good spirits. Further appreciation goes to Paul, my husband, for his confidence in me and for tolerating my perpetual ‘organized-mess’ of journal papers, files, and textbooks, which completely filled every available breathing space in my office.

My sincere gratitude extends to those migraine sufferers and controls who altruistically volunteered to participate in procedures for this study. Impressively, despite considerably uncomfortable and unpleasant procedures, participants returned to the laboratory (often reluctantly) to endure 3 separate testing sessions all in all. Indeed, without their dedicated help this research would not have been possible.
Finally I acknowledge the pleasing and therapeutic presence of our pets: Willy (a delightfully affectionate chicken) and Minx and Tim (two playful, sometimes naughty, sun conures – that had total disregard to my allocated ‘thesis-time’). Much gratitude to Maria Gardiner of the Staff Development and Training Unit, Flinders University South Australia for her helpful hints on the management of these pesky but adorable Ph.D. - sabotaging parrots! Her Clinical Psychology skills apparently extend to remedying behavioural problems in those with feathers.

No help from these two (Minx and Tim)