Development of tools for surveillance of *Coxiella burnetii* in domestic ruminants and Australian marsupials and their waste

Presented By

Michael Banazis

Submitted in total fulfilment of the requirements of the degree of

Doctor of Philosophy

School of Veterinary and Biomedical Sciences

Division of Health Sciences

Murdoch University

12 June, 2009
Declaration

The experiments in this thesis constitute work carried out by the candidate unless otherwise stated. The thesis is less than 100,000 words in length, exclusive of tables, figures, bibliography and appendices, and complies with the stipulations set out for the degree of Doctor of Philosophy by Murdoch University.

Michael Banazis

School of Veterinary and Biomedical Sciences

Murdoch University;

Murdoch, Western Australia, 6150

Australia

12/06/2009

School of Veterinary and Biomedical Sciences
Table of Contents

List of Tables ... xiv

List of Figures... xviii

Acknowledgments .. xxii

Aims.. xxiii

Thesis abstract... xxiv

Abbreviations ... xxvii

1. Literature review .. 1-1

 1.1 Historical aspects ... 1-1

 1.2 Bacteriology ... 1-3

 1.2.1 Classification and related species ... 1-3

 1.2.2 Morphology ... 1-5

 1.2.3 Phase variation .. 1-5

 1.2.4 Lifecycle stages .. 1-8

 1.2.5 Tissue tropism .. 1-9

 1.2.6 Resistance to chemical and physical stress ... 1-10

 1.3 Pathogenesis and pathology of Q fever .. 1-11

 1.3.1 Host immune response ... 1-11

 1.3.2 Pathogenesis ... 1-14

 1.3.3 Clinical manifestation in humans .. 1-18

 1.3.4 Clinical manifestation in animals .. 1-19

 1.4 Epidemiology .. 1-20

 1.4.1 Transmission ... 1-20

 1.4.2 Reservoirs of infection ... 1-23

 1.4.3 Geographic distribution .. 1-26

 1.4.4 Incidence and seasonal variation ... 1-26
1.4.5 Risk factors .. 1-27
1.5 Diagnosis/tests .. 1-29
1.5.1 Immunological .. 1-29
1.5.1.1 Complement-fixation test (CFT) 1-30
1.5.1.2 Indirect immunofluorescence assay (IFA) 1-30
1.5.1.3 Enzyme-linked immunosorbent assay (ELISA) 1-31
1.5.2 Polymerase chain reaction (PCR) 1-33
1.6 Viability .. 1-34
1.6.1 Animal inoculation ... 1-35
1.6.2 Culture-based methods .. 1-35
1.6.3 Molecular methods ... 1-37
1.6.4 Membrane integrity and membrane potential-based methods 1-37
1.7 Treatment and control of Q fever infections 1-38
1.7.1 Antibiotic therapy ... 1-38
1.7.2 Vaccination ... 1-39
1.7.3 Disinfection .. 1-40
1.7.4 Behavioural tools for Q fever control 1-42

2. The development and validation of a PCR-based detection system for Coxiella burnetii in environmental samples .. 2-43

2.1 Introduction .. 2-43
2.2 Materials and methods ... 2-44
2.2.1 DNA extraction and standard curve preparation 2-44
2.2.2 Primer design .. 2-44
2.2.3 PCR optimisation ... 2-49
2.2.4 PCR conditions ... 2-50
2.2.5 Reproducibility ... 2-51
2.2.6 Analytical sensitivity ... 2-52
2.2.7 Analytical specificity ... 2-53
2.2.8 Culture, extraction and purification of Coxiella burnetii 2-56
2.2.9 Using optical density to estimate Coxiella burnetii genome number 2-57
2.2.10 DNA extraction from environmental matrices 2-57
2.2.10.1 Extraction of DNA from bovine faeces and qPCR amplification 2-57
2.2.10.2 Optimising DNA extraction conditions 2-58
2.2.10.3 Extraction of whole genomic DNA from kangaroo faeces and qPCR amplification ... 2-60
2.2.10.4 Extraction of whole genomic DNA from soil and qPCR amplification ... 2-60
2.2.10.5 Reduction of PCR inhibition .. 2-61

2.3 Results .. 2-63
2.3.1 Optimising PCR Conditions .. 2-63
2.3.2 Reproducibility .. 2-67
2.3.3 Analytical sensitivity .. 2-70
2.3.4 Analytical specificity ... 2-74
2.3.5 Extraction of *Coxiella burnetii* DNA from environmental matrices 2-74
 2.3.5.1 Extraction of DNA from bovine faeces and qPCR amplification of *Coxiella burnetii* DNA .. 2-74
 2.3.5.2 Reduction of PCR inhibition .. 2-76
 2.3.5.3 Optimising DNA purification conditions 2-78
 2.3.5.4 Efficiency of purification of whole genomic DNA from kangaroo faeces and qPCR amplification .. 2-79
 2.3.5.5 Purification of whole genomic DNA from soil and qPCR amplification .. 2-81
2.3.6 Purification of *Coxiella burnetii* from vero cell monolayers 2-83
2.3.7 Regression analysis of genome copy number versus \(\text{Abs}_{250\text{nm}} \) 2-83

2.4 Discussion .. 2-87
2.5 Conclusions .. 2-92

3. A cell culture-based quantitative-PCR assay to determine the susceptibility of *Coxiella burnetii* to chemical and physical disinfectants 3-93

3.1 Introduction .. 3-93
3.2 Materials and methods ... 3-94
 3.2.1 Culture and extraction of *Coxiella burnetii* from tissue culture cells 3-94
 3.2.2 Treatment medium .. 3-95
3.2.3 Treatment with disinfectants ...3-96
 3.2.3.1 Experiment 1: sodium hypochlorite treatment3-96
 3.2.3.2 Experiment 2: ultra-violet (UV) light treatment3-97
 3.2.3.3 Experiment 3: ozone treatment ..3-98
 3.2.3.4 Experiment 4: Peracetic acid treatment3-99
 3.2.3.5 Experiment 5: treatment with peracetic acid in combination with
 sodium hypochlorite ..3-99
 3.2.3.6 Experiment 6: Virkon® S treatment ..3-100
 3.2.3.7 Experiment 7: Hydrogen peroxide treatment3-100

3.2.4 Extraction of genomic DNA from cell cultures3-101
3.2.5 TaqMan real-time PCR ...3-101
3.2.6 Interpretation of data ...3-102
3.2.7 Statistical analysis of data ...3-103

3.3 Results ..3-103
 3.3.1 Treatment medium ..3-103
 3.3.2 Reduction in growth of *Coxiella burnetii* exposed to sodium
 hypochlorite ...3-106
 3.3.3 Reduction in growth of *Coxiella burnetii* exposed to UV radiation 3-111
 3.3.4 Reduction in growth of *Coxiella burnetii* exposed to ozone3-115
 3.3.5 Reduction in growth of *Coxiella burnetii* exposed to peracetic acid3-118
 3.3.6 Reduction in growth of *Coxiella burnetii* exposed to peracetic acid
 in combination with hypochlorite ...3-121
 3.3.7 Reduction in growth of *Coxiella burnetii* exposed to Virkon® S ...3-124
 3.3.8 Reduction in growth of *Coxiella burnetii* exposed to hydrogen peroxide
 ..3-127

3.4 Discussion ..3-130
 3.4.1 Controls ...3-130
 3.4.2 Sodium hypochlorite ...3-130
 3.4.3 Sodium hypochlorite in combination with peracetic acid3-132
 3.4.4 Ultra-violet radiation ...3-133
 3.4.5 Ozone ..3-135
 3.4.6 Virkon® S ...3-135
 3.4.7 Hydrogen peroxide ...3-136

12/06/2009 School of Veterinary and Biomedical Sciences
4. A RT-qPCR for detection of viable *Coxiella burnetii* cells in environmental matrices

4.1 Introduction ... 4-138
4.2 Materials and methods ... 4-140
4.2.1 Culture and extraction of *Coxiella burnetii* from tissue culture cells... 4-140
4.2.2 Heat treatment of cells ... 4-140
4.2.3 Extraction and purification of RNA from cell culture-derived *Coxiella burnetii* ... 4-141
4.2.4 Reverse transcription Polymerase Chain Reaction (RT-PCR) 4-141
4.2.5 Preparation of soil samples containing *Coxiella burnetii* 4-142
4.2.6 Extraction of genomic DNA from soil samples .. 4-143
4.2.7 Extraction and reverse transcription of RNA from soil samples... 4-143
4.2.8 Blocking of RNA Transcription with Rifampicin 4-144
4.2.9 Assessing disinfectant efficacy based on DNA and RNA quantification 4-144
4.2.10 TaqMan Quantitative PCR for DNA and cDNA 4-145
4.2.11 Data Analysis ... 4-146
4.3 Results ... 4-147
4.3.1 Changes in RNA Transcription in Response to heat 4-147
4.3.1.1 Changes in RNA Transcription observed at 37°C 4-147
4.3.1.2 Changes in RNA Transcription observed at 40°C 4-150
4.3.1.3 Changes in RNA Transcription observed at 44°C 4-153
4.3.1.4 Changes in RNA Transcription observed at 48°C 4-156
4.3.2 RNA and DNA extracted from soil over time.. 4-159
4.4 Assessment of Disinfectant Efficacy of Sodium Hypochlorite 4-161
4.4.1 Differences between disinfection efficacy of varying NaOCl concentrations .. 4-163
4.4.1.1 Quantified with qPCR of cDNA ... 4-163
4.4.1.2 Quantified with qPCR of DNA co-purified during RNA extraction 4-163
4.4.1.3 Quantified with qPCR of DNA extracted from *Coxiella burnetii* after *in vitro* culture for seven days4-164

4.4.2 Differences between measurement of percentage reduction of cDNA, DNA co-purified with RNA and DNA extracted from tissue culture..4-164

4.5 Assessment of Disinfectant Efficacy of Hydrogen Peroxide4-165

4.5.1 Differences between disinfection efficacy of varying H$_2$O$_2$ concentrations ...4-167

4.5.1.1 Quantified with qPCR of cDNA ..4-167

4.5.1.2 Quantified with qPCR of DNA co-purified during RNA extraction 4-167

4.5.1.3 Quantified with qPCR of DNA extracted from *Coxiella burnetii* after *in vitro* culture for seven days4-168

4.5.2 Differences between measurement of percentage reduction of cDNA, DNA co-purified with RNA and DNA extracted from tissue culture..4-168

4.6 Assessment of Disinfectant Efficacy of Ultraviolet Light4-168

4.6.1 Differences between disinfection efficacy of varying UV doses....4-170

4.6.1.1 Quantified with qPCR of cDNA ..4-170

4.6.1.2 Quantified with qPCR of DNA co-purified during RNA extraction 4-170

4.6.1.3 Quantified with qPCR of DNA extracted from *Coxiella burnetii* after *in vitro* culture for seven days4-170

4.6.1.4 Statistical differences between measurement of percentage reduction of cDNA, DNA co-purified with RNA and DNA extracted from tissue culture..4-170

4.7 Blocking RNA Transcription with Rifampicin4-171

4.7.1 Differences between samples pre-treated with rifampicin and samples not pre-treated with rifampicin ..4-173

4.7.2 Differences between disinfection efficacy of varying NaOCl concentrations where all samples were pre-treated with rifampicin4-173

4.8 Discussion ..4-173

4.8.1 Transcription of *Coxiella burnetii* genes in response to heat........4-173
4.8.2 Purification and quantification of *Coxiella burnetii* ScvA RNA from soil over time ... 4-175
4.8.3 Comparison of methods to evaluate *Coxiella burnetii* viability 4-176
4.8.4 The effect of blocking *Coxiella burnetii* transcription with rifampicin on the RT-qPCR viability assay ... 4-177
4.8.5 Conclusions .. 4-179

5. An indirect enzyme-linked immunosorbent assay for the detection of anti-*Coxiella burnetii* antibodies in kangaroos .. 5-181

5.1 Introduction ... 5-181
5.2 Materials and methods ... 5-182
5.2.1 Animal serum .. 5-182
5.2.2 Development of an enzyme-linked immunosorbent assay to detect infection with *Coxiella burnetii* in kangaroos.. 5-182
5.2.3 Stage 1: .. 5-183
5.2.3.1 Selection of optimum secondary antibody concentrations .. 5-183
5.2.3.2 Evaluating methods of immobilising *Coxiella burnetii* antigen onto the microtitre plate .. 5-184
5.2.3.3 Confirmation of binding of kangaroo antibodies to *Coxiella burnetii* antigen .. 5-185
5.2.3.4 Reduction of non-specific binding of kangaroo antibodies. 5-186
5.2.3.5 Identification of high-responder kangaroo serum samples and assessing the affect of adding a blocking agent to secondary antibody diluents .. 5-187
5.2.4 Stage 2: .. 5-188
5.2.4.1 Antigen and antibody titration using high and low kangaroo reactors as controls .. 5-188
5.2.4.2 Titrating control serum against antigen .. 5-190
5.2.4.3 Titrating rabbit anti-kangaroo antiserum against protein G-HRP5-190
5.2.4.4 Titrating rabbit anti-kangaroo antiserum against donkey anti-rabbit-HRP .. 5-190
5.2.4.5 Reproducibility of optimised kangaroo Q fever indirect ELISA

5.2.4.6 Evaluation of an antibody ELISA to detect exposure to *Coxiella burnetii* in serum from western barred bandicoots (*Perameles bougainville*)

5.2.5 Comparison of different cut-off strategies to maximise ELISA performance

5.2.6 Immunological reactivity of kangaroo test sera with phase I or phase II *Coxiella burnetii* antigen individually

5.3 Results

5.3.1 Development of an enzyme-linked immunosorbent assay to detect infection with *Coxiella burnetii* in kangaroos: stage 1

5.3.1.1 Selection of optimum secondary antibody concentrations

5.3.1.2 Evaluating methods of immobilising C. burnetii antigen onto the microtitre plate

5.3.1.3 Confirmation of binding of kangaroo antibodies to *Coxiella burnetii* antigen

5.3.1.4 Reduction of non-specific binding of kangaroo antibodies

5.3.1.5 Identification of high-responder kangaroo serum samples and assessing the affect of adding a blocking agent to secondary antibody diluents

5.3.2 Development of an enzyme-linked immunosorbent assay to detect infection with *Coxiella burnetii* in kangaroos: stage 2

5.3.2.1 Antigen and antibody titration using high and low kangaroo reactors as controls

5.3.2.2 Reproducibility of optimised indirect ELISA to detect *Coxiella burnetii* in kangaroos

5.3.2.3 Evaluation of an antibody ELISA to detect exposure to *Coxiella burnetii* in serum from bandicoots

5.3.3 Comparison of different cut-off strategies to maximise ELISA performance

5.3.4 Immunological reactivity of kangaroo test sera with phase I or phase II *Coxiella burnetii* antigen individually
5.4 Discussion .. 5-199
5.4.1 Assay development ... 5-199
5.4.2 Blocking non-specific binding of antibodies .. 5-201
5.4.3 Cross-reactivity ... 5-201
5.4.4 Selection of a cut-off point for positivity .. 5-202
5.4.5 Specific reactivity of sera to phase I or II antigen .. 5-204
5.4.6 Conclusions .. 5-205

6. A survey of Western Australian sheep, cattle and kangaroos to determine the prevalence of *Coxiella burnetii* .. 6-206

6.1 Introduction .. 6-206
6.2 Materials and methods .. 6-207
 6.2.1 Collection of serum and faeces or urine from sheep, cattle and kangaroos in Western Australia ... 6-207
 6.2.1.1 Bovine samples ... 6-209
 6.2.1.2 Ovine samples ... 6-209
 6.2.1.3 Kangaroo samples .. 6-209
 6.2.2 Detection of antibodies to *Coxiella burnetii* using the complement fixation test ... 6-210
 6.2.3 Detection of antibodies to *Coxiella burnetii* in serum from ruminants from Western Australia using an ELISA .. 6-210
 6.2.4 Detection of antibodies to *Coxiella burnetii* in serum from kangaroos from Western Australia using an ELISA .. 6-211
 6.2.5 Purification of *Coxiella burnetii* whole genomic DNA from faeces and urine ... 6-211
 6.2.6 Quantitative PCR detection of *Coxiella burnetii* DNA isolated from faeces and urine ... 6-212
 6.2.7 Conventional PCR and sequencing .. 6-212
 6.2.8 Assessment of the effect of PCR-inhibitors in faecal DNA extractions6-213
 6.2.9 Isolation of *Coxiella burnetii* from bovine and kangaroo faeces... 6-214
 6.2.10 Data analysis ... 6-214
6.3 Results .. 6-216
6.3.1 Results from testing ruminant and kangaroo serum for the presence of anti-\textit{Coxiella burnetii} antibodies..6-216

6.3.1.1 Results of testing sera for the presence of anti-\textit{Coxiella burnetii} antibodies using the complement fixation test6-216

6.3.1.2 Detection of antibodies to \textit{Coxiella burnetii} in serum from using an ELISA ..6-216

6.3.1.3 Detection of antibodies to \textit{Coxiella burnetii} in serum from kangaroos using an ELISA ..6-217

6.3.2 Results from testing ruminant faecal and urine samples for the presence of \textit{Coxiella burnetii} DNA using a quantitative polymerase chain reaction...6-222

6.3.2.1 Inhibition of PCR by factors co-purified during the DNA isolation procedure ..6-227

6.3.2.2 Results from testing ruminant faecal and urine samples for the presence of \textit{Coxiella burnetii} DNA using a quantitative polymerase chain reaction ..6-227

6.3.2.3 Results from testing kangaroo faecal samples for the presence of \textit{Coxiella burnetii} DNA using a quantitative polymerase chain reaction ..6-227

6.3.2.4 Sequencing results..6-228

6.3.3 Isolation of \textit{Coxiella burnetii} from faeces.....................................6-228

6.4 Discussion ..6-228

6.4.1 Testing bovine and ovine serum samples for the presence of anti-\textit{Coxiella burnetii} antibodies using the complement fixation test and ELISA ..6-228

6.4.2 Testing ruminant faecal and urine samples for the presence of \textit{Coxiella burnetii} DNA and the agreement of these results with immunological findings...6-229

6.4.3 Ruminants and Q fever in Australia..6-231

6.4.4 Detection of antibodies to \textit{Coxiella burnetii} in serum from kangaroos from Western Australia using an ELISA ...6-232

6.4.5 Testing kangaroo faecal samples for the presence of \textit{Coxiella burnetii} DNA using a quantitative polymerase chain reaction.................6-234
6.4.6 Conclusions ... 6-234

7. General Discussion .. 7-236

8. Appendices .. 8-239

Appendix A OD values and percentage reduction in OD value following addition of blocking agents for kangaroo serum samples tested with an ELISA .. 8-239

Appendix B Summary of *com1* gene sequencing results from both ruminant and kangaroo samples ... 8-243

9. Bibliography .. 246
List of Tables

Table 2-1. Primer and probe sequences used to detect *Coxiella burnetii* DNA in a real-time PCR format ... 2-46

Table 2-2. Sources of organisms used to assess the specificity of qPCR assays 2-54

Table 2-3. Optimum primer concentrations and annealing temperatures for qPCR assays ... 2-64

Table 2-4. Optimum magnesium chloride and dual labelled probe concentrations for TaqMan qPCR assays .. 2-65

Table 2-5. Optimum SYBR® Green and magnesium chloride concentrations for intercalating dye qPCR .. 2-66

Table 2-6. Cycle threshold and SEM values for samples with known *Coxiella burnetii* DNA concentrations using TaqMan qPCR assays 2-68

Table 2-7. Cycle threshold and SEM values for samples with known *Coxiella burnetii* DNA concentrations using SYBR® Green I qPCR assays 2-69

Table 2-8. Coefficients of variation (%) of estimated *Coxiella burnetii* genome equivalents resulting from qPCR amplification of a set of DNA standards diluted in 10-fold steps ... 2-71

Table 3-1. Change in pH of HP water or wastewater following the addition of a chemical disinfection agent at a temperature of 22°C 3-104
Table 3-2. Reduction in growth of *Coxiella burnetii* (% red) after exposure to NaOCl at varying concentrations, exposure times and in different mediums measured using a qPCR ... 3-107

Table 3-3. The reduction in growth of *Coxiella burnetii* (% red) in “kill” controls used with each NaOCl disinfection experiment ... 3-109

Table 3-4. Reduction in growth of *Coxiella burnetii* (% red) after exposure to UV at varying doses and in two cell suspension mediums using a qPCR..... 3-112

Table 3-5. The reduction in growth of *Coxiella burnetii* (% red) in “kill” controls used with each UV radiation disinfection experiment......................... 3-113

Table 3-6. Reduction in growth of *Coxiella burnetii* (% red) after exposure to ozone at varying concentrations and in two mediums using a qPCR 3-116

Table 3-7. The reduction in growth of *Coxiella burnetii* (% red) in “kill” controls used with each ozone disinfection experiment................................. 3-117

Table 3-8. Reduction in growth of *Coxiella burnetii* (% red) after exposure to peracetic acid at varying concentrations in HP water using a qPCR 3-119

Table 3-9. The reduction in growth of *Coxiella burnetii* (% red) in “kill” controls used with the peracetic acid disinfection experiment......................... 3-120

Table 3-10. Reduction in growth of *Coxiella burnetii* (% red) after exposure to 3.2 × 10-5% peracetic acid combined with hypochlorite at varying concentrations in HP water and in wastewater using a qPCR 3-122
Table 3-11. The reduction in growth of *Coxiella burnetii* (% red) in “kill” controls used with each PAA/NaOCl disinfection experiment3-123

Table 3-12. Reduction in growth of *Coxiella burnetii* (% red) after exposure to Virkon® S at varying concentrations in HP water and in wastewater using a qPCR..3-125

Table 3-13. The reduction in growth of *Coxiella burnetii* (% red) in “kill” controls used with each Virkon® S disinfection experiment ..3-126

Table 3-14. Reduction in growth of *Coxiella burnetii* (% red) after exposure to hydrogen peroxide at varying concentrations in HP water using a qPCR3-128

Table 3-15. The reduction in growth of *Coxiella burnetii* (% red) in “kill” controls used with the hydrogen peroxide disinfection experiment3-129

Table 6-1. The number of ELISA-positive serum samples from kangaroos from different locations in Western Australia (95% confidence intervals in parentheses)..6-218

Table 6-2. The number and proportion of ELISA-positive kangaroo serum samples for each sex and age group (95% CI’s in parentheses)6-219

Table 6-3. The number and proportion of ELISA-positive kangaroo serum samples for each collection month (95% CI’s in parentheses)6-220

Table 6-4. Results from testing faeces and urine collected from cattle and sheep from different collection locations that were positive when tested with the IS1111a qPCR..6-223
Table 6-5. Results from testing faeces from kangaroos from different locations with the IS1111a qPCR (95% CI’s in parentheses) ... 6-224

Table 6-6. Results from testing faeces from kangaroos for each sex and age group with the IS1111a qPCR (95% CI’s in parentheses) 6-225

Table 6-7. Results from testing faeces from kangaroos for each collection month with the IS1111a qPCR (95% CI’s in parentheses) 6-226
List of Figures

Figure 2-1. Reaction efficiencies of seven qPCR assays at different annealing
 temperatures .. 2-63

Figure 2-2. Percentage of reactions that showed detectable amplification of 10-fold
 dilutions of Coxiella burnetii DNA with different qPCR assays 2-72

Figure 2-3. Cycle threshold values versus Coxiella burnetii DNA standard
 concentration for six qPCR assays .. 2-73

Figure 2-4. Graph showing the reduced qPCR-estimated Coxiella burnetii DNA
 concentration in faecal samples in comparison to the DNA
 concentration estimated for buffer controls .. 2-75

Figure 2-5. Correlation between the dilution of template and estimated Coxiella
 burnetii genomes per reaction as estimated by qPCR 2-77

Figure 2-6. Comparison of cycle threshold values for a quantitative PCR used to
 detect Coxiella burnetii DNA extracted from kangaroo faeces and from
 buffer .. 2-80

Figure 2-7. The differences between qPCR cycle threshold values for Coxiella
 burnetii DNA extracted from soil and PBS ... 2-82

Figure 2-8. The correlation between the absorbance of a suspension of Coxiella
 burnetii cells at 250nm and the genome number estimated by qPCR 2-84

Figure 2-9. The correlation between the absorbance of a suspension of Coxiella
 burnetii cells at 420nm and the genome number estimated by qPCR 2-85
Figure 2-10. The correlation between the absorbance of a suspension of *Coxiella burnetii* cells at 600nm and the genome number estimated by qPCR...... 2-86

Figure 4-1. Changes in the abundance of five *Coxiella burnetii* RNA transcripts estimated by qPCR over time at 37°C and expressed as a ratio of the time 0 RNA abundance... 4-148

Figure 4-2. Changes in the absolute abundance of five *Coxiella burnetii* RNA transcripts estimated by qPCR over time at over time at 37°C 4-149

Figure 4-3. Changes in the abundance of five *Coxiella burnetii* RNA transcripts estimated by qPCR over time at 40°C and expressed as a ratio of the time 0 RNA abundance... 4-151

Figure 4-4. Changes in the absolute abundance of five *Coxiella burnetii* RNA transcripts estimated by qPCR over time at over time at 40°C 4-152

Figure 4-5. Changes in the abundance of five *Coxiella burnetii* RNA transcripts estimated by qPCR over time at 44°C and expressed as a ratio of the time 0 RNA abundance... 4-154

Figure 4-6. Changes in the absolute abundance of five *Coxiella burnetii* RNA transcripts estimated by qPCR over time at over time at 44°C 4-155

Figure 4-7. Changes in the abundance of five *Coxiella burnetii* RNA transcripts estimated by qPCR over time at 48°C and expressed as a ratio of the time 0 RNA abundance... 4-157
Figure 4-8. Changes in the absolute abundance of five *Coxiella burnetii* RNA transcripts estimated by qPCR over time at over time at 48°C..............4-158

Figure 4-9. Copy number of *Coxiella burnetii* cDNA and DNA purified from soil or water over time estimated by qPCR ...4-160

Figure 4-10. Comparison of measurements of NaOCl disinfectant efficacy using qPCR of ‘cDNA’, ‘TRI DNA’ and DNA purified from *C. burnetii* after culture for seven days in vitro ...4-162

Figure 4-11. Comparison of measurements of hydrogen peroxide disinfectant efficacy using qPCR of ‘cDNA’, ‘TRI DNA’ and DNA purified from *Coxiella burnetii* after in vitro culture for seven days4-166

Figure 4-12. Comparison of measurements of UV radiation disinfectant efficacy using qPCR of ‘cDNA’, ‘TRI DNA’ and DNA purified from *Coxiella burnetii* after in vitro culture for seven days ..4-169

Figure 4-13. Quantitative PCR measurement of *Coxiella burnetii* cDNA reduction in comparison to a no treatment control in response to insult with NaOCl where one group of samples was pre-treated with rifampicin4-172

Figure 5-1. OD values from testing two ruminant control serum samples and four kangaroo serum samples with an ELISA using doubling dilutions of protein G-HRP ...5-194

Figure 5-2. The ratio of phase I *Coxiella burnetii* antigen OD values to phase II *C. burnetii* antigen OD values for kangaroo sera ..5-198
Figure 6-1. Map of the approximate locations of sampling sites for collection of serum and faeces from cattle, sheep and kangaroos in Western Australia

(adapted from a map generated in the Magellan Discover AUS software)6-208
Acknowledgments

The work presented here was conducted using funding from the Environmental biotechnology cooperative research centre (EBCRC) and experiments that were crucial to this study were performed in the State Agricultural Biotechnology Centre (SABC) at Murdoch University.

I would like to thank both Simon Reid and Stan Fenwick for all the professional and personal help they have provided over the years. You have both contributed to my appreciation of applied science.

I would also like to acknowledge the support of the Trailer Trash denizens. I have you all to thank for what little sanity I have left. I would like to make special mention of the contribution that Abbey Bestall made to my project. Without her generously making her kangaroo samples available I’m sure that the work presented would not be as compelling.

Finally, I’d like to thank my friends and family who have graciously accepted my moods and general lack of availability. This is especially true of Cynthia who has only known me as a PhD student and perhaps doesn’t know what she’s been missing.
Aims

1. To develop and apply quantitative polymerase chain reaction tools for the detection of *Coxiella burnetii* in waste from livestock production industries.

2. To develop a quantitative assay to assess the efficacy of disinfectants against *Coxiella burnetii* in liquid waste from livestock production.

3. To develop molecular tools to determine the viability of *Coxiella burnetii* recovered from wastes of livestock production.

4. To develop an enzyme-linked immunosorbent assay for the detection of anti-*Coxiella burnetii* antibodies in Australian marsupials.
Thesis abstract

The aim of this study was to develop improved methods to detect viable Coxiella burnetii in wastes from livestock production. The impetus for this work arose because there is a significant risk of infection for humans attributed to contact with waste products from the livestock production industry. This situation is further compounded by the lack of suitable tools to detect viable C. burnetii in these wastes. In addition, effective disinfection strategies for livestock wastes are also required to reduce the risk of infection with C. burnetii for individuals that come into contact with these waste products.

A quantitative real-time PCR system (qPCR) with high sensitivity and specificity was developed to detect the C. burnetii in environmental samples associated with domestic ruminants and native Australian marsupials. Different detection chemistries and procedures were evaluated based on their sensitivity, specificity and reproducibility. Overall it was found that the TaqMan PCR targeting the IS1111a locus provided the most sensitive and reproducible test. The Geneworks PowerSoil™ DNA isolation kit provided the best compromise between reproducibility and recovery of DNA from livestock wastes. When combined, the IS1111a TaqMan qPCR and Geneworks PowerSoil DNA Extraction Kit provided a test which was capable of detecting as few as two C. burnetii genome equivalents in 0.2g of soil or faeces.

Coxiella burnetii has been shown to display extreme resistance to environmental exposure. Therefore, assessment of the viability of the organism in environmental matrices is more useful for risk assessment programs than detection of DNA alone. A quantitative reverse transcriptase PCR was developed
that was able to detect viable *C. burnetii* cells in soil. The sensitivity of the assay was enhanced by heat-treating the soil samples prior to extraction of RNA.

The factor most often associated with transfer of *C. burnetii* to humans is exposure to livestock or their waste. Therefore, decontamination of waste from livestock production industries is a key factor in preventing outbreaks of Q fever. A system was developed to determine the efficacy of various disinfectant treatments against the environmental pathogen *C. burnetii*. Treatments evaluated included sodium hypochlorite, ozone, ultraviolet light, peracetic acid (PAA), and Virkon S®. Sodium hypochlorite at a concentration of 0.1 mM reduced the infectivity of *C. burnetii* by over 92% while treatment with the same sodium hypochlorite concentration in wastewater showed significantly reduced efficacy. Despite this reduced potency, sodium hypochlorite is still useful for control of *C. burnetii* in the liquid waste of animal production.

Commercially available ELISA and CFT assays exist for ruminants but there are no immunological tests available for detecting *C. burnetii* in marsupials even though Australian marsupials are known to be susceptible to *C. burnetii*. An indirect ELISA for detecting anti-*Coxiella* antibodies in kangaroos was developed. Paired serum and faecal samples were taken from 379 ruminants from Western Australia and the serum was tested with a commercially available ELISA and the complement fixation test while the faeces was tested using the qPCR developed during this study. Paired serum and faecal samples were taken from 343 kangaroos from WA and were tested with the antibody-ELISA developed during this study and by qPCR. A very low prevalence of anti-*Coxiella* antibodies was observed in the ruminants sampled and results from immunological tests correlated poorly with qPCR data. The development of an ELISA for use with kangaroo serum was problematic because of the lack of reference sera from
animals known to be infected with *C. burnetii*. Despite this results from the ELISA developed suggested that the apparent seroprevalence in the WA animals surveyed was approximately 34%. Results from testing kangaroo faeces with the qPCR correlated poorly with the results from the antibody-ELISA. These data suggest that kangaroos may be a significant reservoir of *C. burnetii* in Western Australia and due to cohabitation of kangaroos and domestic ruminants, may provide a link between the wildlife and domestic cycles of *C. burnetii*.
Abbreviations

- `<` less than
- `>` more than
- `≤` less than or equal to
- `≥` more than or equal to
- `±` plus or minus
- `%` percent
- `μ (prefix)` micro \((10^{-6}) \)
- `p (prefix)` pico \((10^{-9}) \)
- `°C` degrees Celsius
- `ABTS` 2,2’-azino-di-(3-ethylbenzylhiazoline-6-sulfonate)
- `CFT` complement-fixation test
- `CT` cycle threshold
- `DMEM` Dulbecco’s modified eagle’s medium
- `DMSO` dimethyl sulfoxide
- `EDTA` ethylenediamine-tetra acetic acid, tri-potassium salt
- `ELISA` enzyme-linked immunosorbent assay
- `et al.` and others
- `FCS` foetal calf serum

12/06/2009 School of Veterinary and Biomedical Sciences
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>unit of gravitational field</td>
</tr>
<tr>
<td>HP</td>
<td>highly pure</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxidase</td>
</tr>
<tr>
<td>IFAT</td>
<td>indirect fluorescent antibody test</td>
</tr>
<tr>
<td>IgA</td>
<td>immunoglobulin A</td>
</tr>
<tr>
<td>IgG</td>
<td>immunoglobulin G</td>
</tr>
<tr>
<td>IgM</td>
<td>immunoglobulin M</td>
</tr>
<tr>
<td>L</td>
<td>litre</td>
</tr>
<tr>
<td>LCV</td>
<td>large cell variant</td>
</tr>
<tr>
<td>LPS</td>
<td>lippopolysaccharide</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>M</td>
<td>molar concentration</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>NaOCl</td>
<td>sodium hypochlorite</td>
</tr>
<tr>
<td>NT</td>
<td>no treatment</td>
</tr>
<tr>
<td>NTC</td>
<td>no template control</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PAA</td>
<td>peracetic acid</td>
</tr>
<tr>
<td>PP</td>
<td>percent positive</td>
</tr>
<tr>
<td>qPCR</td>
<td>quantitative polymerase chain reaction</td>
</tr>
<tr>
<td>RT-qPCR</td>
<td>reverse transcriptase qPCR</td>
</tr>
<tr>
<td>SCV</td>
<td>small cell variant</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SDC</td>
<td>small dense cell</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean</td>
</tr>
<tr>
<td>TE</td>
<td>Tris (hydroxymethyl) methylamine EDTA</td>
</tr>
<tr>
<td>TEN-T</td>
<td>TE and NaCl with 0.05% (v/v) Tween 20</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>WA</td>
<td>Western Australia</td>
</tr>
<tr>
<td>w/v</td>
<td>weight in volume</td>
</tr>
<tr>
<td>v/v</td>
<td>volume in volume</td>
</tr>
</tbody>
</table>