Identification of Downstream Target Genes of the T-cell Oncoprotein HOX11 by Global Gene Expression Profiling

Darcelle Natalie Dixon
B.Sc. (Hons)

This thesis is presented for the degree of

Doctor of Philosophy

Of

Murdoch University

2004

Division of Health Sciences
Murdoch University
Perth, Western Australia
I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution.

Darcelle Natalie Dixon
Acknowledgements

Dr Wayne Greene
Thank you for being my supervisor and for correcting my thesis.

Professor Ursula Kees
Thank you for your careful guidance with reference to the final experimental chapter of this thesis and for your editorial work.

Dr Vanessa Fear, Dr Katrin Hoffman, Jette Ford, Dr Matthew Callow, Dr Ross Taplin
Thank you for your technical assistance and patient advice on the RDA, GeneChip microarray, culture of leukaemic cell lines, cDNA microarray and statistical analysis respectively. This work would not have been possible without you.

Dr Vanessa Fear, Dr Mark Fear, Dr Jacqueline Phillips
Thank you for employing me during the completion of this thesis. Secondly, thank you for your support and encouragement during a difficult time.

Mum, Dad, Robert and Michael
Thank you for your love and support, this thesis would not have been possible without you.

Martin
Thank you for understanding.
Abstract

HOX11 is a homeodomain transcription factor that has been implicated in leukaemic transformation associated with T-cell acute lymphoblastic leukaemia (T-ALL). Its role in leukaemogenesis remains enigmatic, nevertheless, *in vitro* and *in vivo* studies have provided additional evidence supporting the role of HOX11 as an oncogene. The mechanism by which HOX11 transforms cells is yet to be elucidated, however, HOX11 has been postulated to function by binding regulatory elements within the promoter regions of specific target genes in order to control gene transcription. The identification of transcriptional targets is thus thought to be critical to our understanding of the pathways controlled by this master gene regulator. To date, only three candidate HOX11 target genes have been reported and given that HOX11 overexpression can have a profound impact on cell behaviour, it is likely that many more exist. In this study, we sought to further understand the role of HOX11 in tumorigenesis by: 1) The identification of novel putative HOX11 target genes by profiling gene expression in response to HOX11 in a number of cell lines using a combination of RDA, cDNA microarray and GeneChip approaches and 2) confirming target gene status by assessing whether the proximal promoters of the leading candidates identified are transcriptionally regulated by HOX11.

To identify genes whose expression was altered by HOX11, three techniques were employed, namely representational difference analysis, cDNA microarray and Affymetrix GeneChip array. Because of the relative novelty of these technologies, all three methods were employed in a complementary manner. While representational difference analysis did not require dedicated equipment and enabled the identification of novel genes, the technique was labour-intensive and also exhibited a number of problems including high levels of background. Emphasis was therefore placed on the more systematic microarray approaches that enabled a global investigation of expression patterns and thus the identification of a range of candidate target genes. Initially, this involved cDNA microarray experiments, however, during the course of this work Affymetrix GeneChip technology became available. The latter was identified as the most appropriate technology for the identification of candidate target genes because of its relative ease of use, as well as its employment of multiple independent probe pairs which greatly improved background noise, increased the range and accuracy of detection, minimized the effects of cross hybridization and drastically reduced the rate of false positives and miscalls.

Using these combined approaches, several genes of interest were identified which were differentially regulated in the presence of HOX11 and thus may represent oncogenically or physiologically relevant target genes. These included **OSTEOPONTIN**, **PAG**, **GUANOSINE DIPHOSPHATE DISSOCIATION INHIBITOR 3**, **SUR8**, **GAS3**, **C-KIT**, **VEGFC**, **NOR1** and
SMARCD3. In order to confirm their role as target genes, four candidates (C-KIT, VEGFC, NOR1 and SMARCD3) were characterized in terms of the ability of their proximal promoters to be transcriptionally regulated by HOX11 using luciferase reporter assays. Significant repression of the proximal promoters of C-KIT and VEGFC by HOX11 was observed, which provided further evidence for their status as target genes. This repression was, however, in stark contrast to the transcriptional activation seen when the C-KIT and VEGFC proximal promoters were co-transfected with a HOX11 mutant lacking the third helix of the DNA-binding homeodomain. This unexpected finding suggested that the transcriptional activity of HOX11 is complex and highly context-dependent, and in particular, highlighted the importance of an intact homeodomain for HOX11 function.

C-KIT and VEGFC are both involved in tyrosine kinase signal transduction pathways, as a receptor tyrosine kinase and tyrosine kinase ligand, respectively. C-KIT plays an important role in the survival and self-renewal of haematopoietic cells. It is a previously identified and relatively well characterized oncogene known to be regulated by other transcription factors (SCL/TAL1 and LMO) implicated in the pathogenesis of T-ALL. VEGFC is a member of the vascular endothelial growth factor family that functions in angiogenesis and lymphangiogenesis. A paracrine loop involving VEGFC and its receptor VEGFR-3 has previously been implicated in leukaemic cell survival. While further work is required in order to confirm the status of VEGFC and C-KIT as oncogenically-relevant HOX11 target genes and to characterize their exact mode of regulation, these findings implicate receptor tyrosine kinases in HOX11-mediated tumorigenesis and underscore their potential importance as therapeutic targets in haematological malignancies.
Table of Contents

Thesis Declaration i
Acknowledgements ii
Abstract iii
Table of Contents v
Abbreviations x
List of Figures and Tables xiii
Thesis Publications xvii
Thesis Presentations xviii

Chapter One - Introduction

1.1 Molecular Biology of Cancer 2
1.2 Leukaemia 3
1.2.1 Childhood Leukaemia (Acute Lymphoblastic Leukaemia) 5
1.2.2 T-cell Acute Lymphoblastic Leukaemia (T-ALL) 7
1.3 Homeobox Genes 8
1.3.1 HOX Genes and Development 8
1.3.2 HOX Genes and Haematopoiesis 9
1.3.2.1 HOX Genes and T-cell Development 10
1.3.3 HOX Genes and Leukaemia 11
1.3.4 HOX11 as a Homeobox Protein 14
1.3.5 The HOX11 Family of Homeobox Genes 14
1.4 The HOX11 Gene and Its Regulation 17
1.4.1 The Role of HOX11 as a Transcription Factor 18
1.4.2 Co-factors of HOX11 19
1.4.2.1 HOX11 and TALE Homeodomain Proteins 19
1.4.2.2 HOX11 and CTF1 21
1.4.3 HOX11 Functions as a Transcriptional Repressor 21
1.5 The Role of HOX11 in Normal Cells 22
1.5.1 The Role of HOX11 in Development 22
1.5.1.1 Embryonic Expression 22
1.5.1.2 Hox11 Controls the Genesis of the Spleen 22
1.5.1.3 The Fate of the Spleen in Hox11 Knockout Mice 23
1.5.1.4 The Role of the HOX11 Family in Development 24
1.6 Cellular Expression of HOX11 26
1.6.1 T-cell Expression 26
1.6.2 HOX11 Expression in Other Haematopoietic Cells and Tissue Types 27
1.7 The Role of HOX11 in Oncogenesis 28
1.7.1 HOX11 and T-ALL 29
1.7.1.1 HOX11 Dysregulation Involving Translocation 30
1.7.1.2 HOX11 Dysregulation Without Translocation 31
1.7.2 HOX11L2 and T-ALL 32
1.7.3 HOX11 Expression in T-ALL Causes Arrest at the Early Cortical Thymocyte Stage of Development 33
1.8 The Transforming Ability of HOX11 37
1.8.1 Cell Immortalization by HOX11 Across Haematopoietic Lineages 37
1.8.2 Ectopic Expression of HOX11 Leads to the Formation of Immature Cell Phenotypes 38
1.8.3 HOX11 Transformation Involving Altered Gene Expression Through Cooperative Interaction with CTF1 39
1.8.4 HOX11 Transgenic Mice and Oncogenesis 40
1.8.5 HOX11 and the Cell Cycle 40
1.8.6 *HOX11* and Promoter Demethylation 42
1.9 Target Genes of *HOX11* 42
1.9.1 *Wt1* as a Target Gene of *HOX11* 43
1.9.2 *Fhl1* as a Target Gene of *HOX11* 44
1.9.3 *Aldh1a1* as a Target Gene of *HOX11* 44
1.10 Searching for *HOX11* Target Genes 45
1.10.1 Representational Difference Analysis 46
1.10.1.1 Utilization of Representational Difference Analysis for the Identification of Target Genes Associated with Leukaemia 47
1.10.2 Microarray Technology 49
1.10.2.1 cDNA Microarray 50
1.10.2.1.1 Utilization of cDNA Microarray Technology for Expression Profiling of Leukaemias 50
1.10.2.1.2 Utilization of cDNA Microarray Technology for the Identification of Target Genes Associated with Cancer 51
1.10.2.2 GeneChip Microarray For Gene Expression 52
1.10.2.2.1 Utilization of GeneChip Microarray Technology for Expression Profiling of Leukaemias 53
1.10.2.2.2 Utilization of GeneChip Technology for the Identification of Target Genes Associated with Cancer 55
1.11 Models for Studying *HOX11*. The Paradox of *HOX11* 57
1.12 Thesis Aims 58

Chapter Two- Materials and Methods

2.1 MATERIALS 60
2.1.1 Bacterial Strains 60
2.1.2 Cell Lines 60
2.1.3 Tissue Culture Media 62
2.1.4 Chemicals and Reagents 62
2.1.5 Materials and Equipment 64
2.1.6 Buffers and Solutions 64
2.1.7 Oligonucleotides 67
2.1.8 Vector Constructs 71
2.1.8.1 pEFBOS 72
2.1.8.2 pEFBOS*HOX11* 72
2.1.8.3 pEFBOS β-GALACTOSIDASE 73
2.1.8.4 pCR2.1 73
2.1.8.5 pGL3BASIC 73
2.1.8.6 pGL3CONTROL 74
2.1.8.7 pSV-β-GALACTOSIDASE VECTOR 75
2.1.9 Luciferase Materials and Reagents 75
2.1.10 Affymetrix Microarray Materials and Reagents 75
2.1.10.1 Buffers and Solutions 77
2.1.11 cDNA Microarray Materials and Reagents 78
2.1.11.1 Buffers and Solutions 78
2.1.12 Antibodies 78
2.2 Methods 79
2.2.1 Cell Culture 79
2.2.1.1 Growth and Maintenance 79
2.2.1.2 Cryopreservation 79
2.2.1.2.1 Suspension Cells 79
2.2.1.2.2 Adherent Monolayer Cells 79
2.2.1.3 Cytospin Preparations 80
2.2.2 Molecular Biology 80
2.2.2.1 Representational Difference Analysis 80
2.2.2.2 cDNA Microarray Analysis 80
2.2.2.2.1 Total RNA Preparation 80
2.2.2.2.2 Preparation of Slides 80
2.2.2.2.3 Staining of Slides 81
2.2.2.2.4 Scanning of Microarrays 81
2.2.2.3 Affymetrix Microarray Analysis 81
2.2.2.3.1 Total RNA Preparation 81
2.2.2.3.2 First Strand cDNA Synthesis 81
2.2.2.3.3 Second Strand cDNA Synthesis 82
2.2.2.3.4 Phase Lock Gel Cleanup of Double Stranded cDNA 82
2.2.2.3.5 In Vitro Transcription 82
2.2.2.3.6 Fragmentation of cRNA 82
2.2.2.3.7 Target Preparation and Hybridization 82
2.2.2.3.8 Washing and Staining 83
2.2.2.3.9 Scanning of GeneChips 83
2.2.3 DNA Sequencing and Database Searching 83
2.2.4 Plasmid DNA Preparation 83
2.2.5 Restriction Endonuclease Analysis 83
2.2.6 DNA/RNA Quantitation 83
2.2.7 Preparation of Competent Cells 83
2.2.8 Ligation Reactions 84
2.2.9 Transformation of Competent Cells 84
2.2.10 RT-PCR 84
2.2.11 PCR 85
2.2.12 Radiolabelling Probes 85
2.2.13 RNA Preparation 85
2.2.13.1 Trizol 85
2.2.13.2 NP40 Lysis 85
2.2.13.3 mRNA Extraction 86
2.2.14 Northern Analysis 86
2.2.14.1 Total RNA Preparation 86
2.2.14.2 Northern Blotting 86
2.2.14.3 Hybridization 86
2.2.15 Southern Analysis 86
2.2.15.1 Genomic DNA Preparation 86
2.2.15.2 Southern Blotting 87
2.2.15.3 Hybridization 87
2.2.16 Western Analysis 87
2.2.17 Luciferase and ß-Galactosidase Reporter Gene Assays 88
2.2.17.1 Preparation of DNA for Transfections 88
2.2.17.2 Cell Culture and Transfection 88
2.2.17.3 Luciferase and ß-Galactosidase Reporter Gene Assays 88
2.2.17.4 Statistical Analysis 89
Chapter Three- Utilization of Representational Difference Analysis to Investigate the Dedifferentiation of the J2E Erythroid Cell Line by the Ectopic Expression of HOX11

3.1 INTRODUCTION 91
3.2 RESULTS 93
3.2.1 Production of J2E Cell Lines Which Express HOX11 93
3.2.2 HOX11 Induces An Immature Morphology in J2E Erythroid Cells 96
3.2.3 The Effect of HOX11 on the Expression of Known Target Genes 97
3.2.4 The Effect of HOX11 on the Expression of Genes Associated with the Erythroid Lineage 97
3.2.5 Searching for Genes Whose Expression is Altered in J2E Cells as a Result of Enforced HOX11 Expression 103
3.2.5.1 The CLONTECH PCR Select cDNA Subtraction Kit for Representational Difference Analysis 103
3.2.5.2 Optimization of cDNA Synthesis/ Adaptor Ligation for Representational Difference Analysis 105
3.2.6 Results of Representational Difference Analysis to Identify Genes Whose Expression is Altered by Enforced Expression of HOX11 in J2E Cells 108
3.2.7 Analysis of Individual Forward Subtracted Representational Difference Analysis Clones 116
3.2.8 Expression of HOX11 Up-regulated Genes in Leukaemic Cell Lines 125
3.3 DISCUSSION 165

Chapter Four- Utilization of cDNA Microarray to Investigate the Dedifferentiation of the J2E Cell Line by the Ectopic Expression of HOX11

4.1 INTRODUCTION 172
4.2 RESULTS 174
4.2.1 Utilization of cDNA Microarray Technology on the J2E Erythroid Cell Line to Identify Genes Whose Expression is Altered as a Result of Enforced Expression of HOX11 174
4.2.2 Expression of Genes of Interest From the cDNA Microarray in a Panel of Leukaemic Cell Lines 184
4.3 DISCUSSION 229

Chapter Five- Utilization of Affymetrix GeneChip Technology to Identify Candidate Target Genes of the Oncoprotein HOX11

5.1 INTRODUCTION 234
5.2 RESULTS 236
5.2.1 Utilization of Affymetrix GeneChip Technology to Identify Candidate HOX11 Target Genes 236
5.2.2 Optimization of the Affymetrix GeneChip Technology Protocol 241
5.2.3 Genes Up-Regulated With HOX11 Expression By GeneChip Analysis 245
5.2.4 Screening of Genes From the GeneChip Analysis Across a Panel of Cell Lines. The Correlation of Patterns of Gene Expression with HOX11 Expression 250
5.3 DISCUSSION 274
Chapter Six- Utilization of Luciferase Reporter Assays to Establish the Transcriptional Regulation of Candidate Target Genes by HOX11

6.1 INTRODUCTION 278
6.2 RESULTS 279
6.2.1 Luciferase Promoter Constructs 279
6.2.2 Optimization of Luciferase Reporter Gene Assays 287
6.2.3 Luciferase Reporter Assays to Establish the Ability of HOX11 to Transcriptionally Regulate Candidate Target Genes 293
6.3 DISCUSSION 296

Chapter Seven- General Discussion

7.1 DISCUSSION 302

Appendix

Appendix 1 312
Appendix 2 314
Appendix 3 316
Appendix 4 318
Appendix 5 320
Appendix 6 322
Appendix 7 325

References

References 328
Abbreviations

°C Degrees Celsius
A Absorbance
aa Amino Acid
Aldh1a1 Aldehyde Dehydrogenase 1a1
ALL Acute Lymphoblastic Leukaemia
AML Acute Myeloid Leukaemia
Amp Ampicillin Resistance Gene
APL Acute Promyelocytic Leukaemia
B-CLL B-cell Chronic Lymphoblastic Leukaemia
bp Base Pairs
BSA Bovine Serum Albumin
CDC25A Cell Division Cycle 25A
cDNA Complementary DNA
CDP CCAAT Displacement Protein
ChIP Chromatin Immunoprecipitation
cm Centimetre
CML Chronic Myeloid Leukaemia
CNS Central Nervous System
COOH Carboxyl terminus
cpm Counts per Minute
CY Cyanine
Da Dalton
DAF Diaminofluorene
DD Dihydriodiol Dehydrogenase
dNTP Dinucleotide Triphosphate
ddH2O Double-deionised Water
DMEM Dulbecco’s Modified Medium
DNA Deoxyribonucleic Acid
DTT Dithiothreitol
E Embryonic Day
EDTA Ethylenediamine Tetra Acetic Acid
EF Elongation Factor
EFS Event Free Survival
EGTA Ethylene Glycol-bis tetra Acetic Acid
En Engrailed
Epo Erythropoietin
ES Embryonic Stem Cell
EST Expressed Sequence Tag
ETF Electron Transfer Flavoprotein
FCS Foetal Calf Serum
FIL FIL Repression Domain
FISH Fluorescence In Situ Hybridization
g Gram
GAPDH Glyceraldehyde 3-Phosphate Dehydrogenase
GAS3 Growth Arrest Specific Factor 3
Gly-Rich Glycine Rich
h Hour
HD Homeodomain
HEPES Hydroxy Ethyl Piperazine Ethane Sulfonic Acid
HRP Horse Radish Peroxidase
IGFBP10 Insulin Like Growth Factor Binding Protein 10
Kan Kanamycin Resistance Gene
<table>
<thead>
<tr>
<th>WBC</th>
<th>White Blood Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZF67</td>
<td>Zinc Finger 67</td>
</tr>
</tbody>
</table>
List of Figures and Tables

Chapter One

FIGURE 1.1 THE HOX11 FAMILY OF HOMEOBOX PROTEINS
FIGURE 1.2 THE CORRELATION OF GENE EXPRESSION PROFILES OF HOX11+ T-ALL SAMPLES WITH THE EARLY CORTICAL STAGE OF THYMOCYTE DIFFERENTIATION

TABLE 1.1 DISTRIBUTION OF TRANSLOCATIONS IN CHILDHOOD ALL
TABLE 1.2 THE ROLE OF HOX GENES IN HAEMATOPOIESIS
TABLE 1.3 HOX GENES IMPLICATED IN LEUKAEMIA
TABLE 1.4 GENES OF THE HOX11 GENE EXPRESSION SIGNATURE INVOLVED IN CELL GROWTH AND PROLIFERATION
TABLE 1.5 GENES MORE HIGHLY EXPRESSED IN HOX11+ T-ALL COMPARED TO HOX11L2+ T-ALL

Chapter Two

FIGURE 2.1 pEFBOSHOX11
FIGURE 2.2 pCR2.1 CLONING VECTOR
FIGURE 2.3 pGL3BASIC VECTOR
FIGURE 2.4 pGL3CONTROL VECTOR
FIGURE 2.5 pSV-β-GALACTOSIDASE VECTOR

Chapter Three

FIGURE 3.1 NORTHERN BLOT ANALYSIS OF J2E CELL LINES
FIGURE 3.2 WESTERN BLOT AND SOUTHERN BLOT ANALYSIS OF J2E CELL LINES
FIGURE 3.3 HOX11 INDUCES AN IMMATURE MORPHOLOGY IN J2E ERYTHROID CELLS
FIGURE 3.4 THE EFFECT OF HOX11 ON THE EXPRESSION OF KNOWN TARGET GENES IN J2E CELLS
FIGURE 3.5 EXPRESSION OF GENES ASSOCIATED WITH THE ERYTHROID LINEAGE IN J2EHOX11 CELLS
FIGURE 3.6 RT-PCR ANALYSIS FOR TRANSCRIPTION FACTOR EXPRESSION IN J2E CLONES
FIGURE 3.7 SCHEMATIC DIAGRAM OF PCR-SELECT cDNA SUBTRACTION
FIGURE 3.8 OPTIMIZATION OF cDNA SYNTHESIS FOR THE CLONTECH PCR SELECT cDNA SUBTRACTION KIT
FIGURE 3.9 DETERMINATION OF EFFICIENCY OF ADAPTOR LIGATION TO RSA I CUT J2E cDNA
FIGURE 3.10 RESULTS OF REPRESENTATIONAL DIFFERENCE ANALYSIS
FIGURE 3.11 SUBTRACTION EFFICIENCY TEST FOR REPRESENTATIONAL DIFFERENCE ANALYSIS
FIGURE 3.12 DETECTION OF HOX11 IN REPRESENTATIONAL DIFFERENCE ANALYSIS POPULATIONS BY PCR
FIGURE 3.13 DNA HYBRIDIZATION ANALYSIS OF REPRESENTATIONAL DIFFERENCE ANALYSIS
FIGURE 3.14 IDENTIFICATION OF CLONES REPRESENTING DIFFERENTIALLY EXPRESSED GENES USING COLONY HYBRIDIZATION
FIGURE 3.15 CONFIRMATION OF DIFFERENCE CLONES BY SOUTHERN ANALYSIS
FIGURE 3.16 CONFIRMATION OF DIFFERENCE CLONES BY SOUTHERN ANALYSIS USING cDNA PROBES
FIGURE 3.17 OPTIMIZATION OF PCR CYCLE NUMBER FOR SEMI-QUANTITATIVE RT-PCR
FIGURE 3.18 HOX11 EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 3.19 BETA HEXOSAMINIDASE EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 3.20 BMI-1 EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 3.21 GP96 EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 3.22 ZF67 EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 3.23 TYROSINE PHOSPHATASE NON-RECEPTOR TYPE 21 EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 3.24 FLJ20329 EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 3.25 C-KIT EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 3.26 OSTEOPONTIN EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 3.27 GUANOSINE DIPHOSPHATE DISSOCIATION INHIBITOR 3 EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 3.28 PAG EXPRESSION IN LEUKAEMIC CELL LINES

TABLE 3.1 SEQUENCE IDENTITY OF REPRESENTATIONAL DIFFERENCE ANALYSIS CLONES
TABLE 3.2 THE PANEL OF CELL LINES UTILIZED FOR SCREENING OF PUTATIVE HOX11 TARGET GENES
TABLE 3.3 SCREENING OF GENE EXPRESSION LEVELS BY NORTHERN BLOT AND RT-PCR ANALYSIS

Chapter Four

FIGURE 4.1 cDNA MICROARRAY ANALYSIS OF J2E CELLULAR MODEL
FIGURE 4.2 cDNA MICROARRAY ANALYSIS OF A J2EHOX11 CELL LINE VERSUS A J2E CONTROL CELL LINE
FIGURE 4.3 CDC-5 LIKE PROTEIN EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 4.4 STRA13 EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 4.5 IGFBP10 EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 4.6 ZINC FINGER PROTEIN X LINKED EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 4.7 CDC25A EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 4.8 INTEGRIN BETA 2 EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 4.9 PDE9A1 EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 4.10 CDC-LIKE KINASE EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 4.11 cGMP DEPENDENT PROTEIN KINASE II EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 4.12 IDB2 EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 4.13 IFN\gamma RECEPTOR EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 4.14 SUR8 EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 4.15 MAP KINASE PHOSPHATASE 1 EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 4.16 VEGFC EXPRESSION IN LEUKAEMIC CELL LINES

TABLE 4.1 FUNCTION OF GENES UP-REGULATED WITH HOX11 EXPRESSION
TABLE 4.2 FUNCTION OF GENES DOWN-REGULATED WITH HOX11 EXPRESSION
TABLE 4.3 SCREENING OF GENE EXPRESSION LEVELS BY NORTHERN BLOT AND RT-PCR ANALYSIS FOR GENES UP-REGULATED WITH HOX11 EXPRESSION
TABLE 4.4 SCREENING OF GENE EXPRESSION LEVELS BY NORTHERN BLOT AND RT-PCR ANALYSIS FOR GENES DOWN-REGULATED WITH HOX11 EXPRESSION

Chapter Five
FIGURE 5.1 UTILIZATION OF AFFYMETRIX GENECHIP TECHNOLOGY TO IDENTIFY PUTATIVE HOX11 TARGET GENES
FIGURE 5.2 OPTIMIZATION OF RNA ISOLATION FOR AFFYMETRIX GENECHIP ANALYSIS
FIGURE 5.3 ANALYSIS OF cRNA SAMPLES FOR INTEGRITY BY GEL ELECTROPHORESIS
FIGURE 5.4 QUALITY GUIDELINES FOR AFFYMETRIX GENECHIP ANALYSIS
FIGURE 5.5 GENES UP-REGULATED WITH HOX11 EXPRESSION BY AFFYMETRIX GENECHIP ANALYSIS
FIGURE 5.6 HEPATOMA TRANSMEMBRANE KINASE EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 5.7 GROWTH ARREST SPECIFIC FACTOR 3 EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 5.8 DIHYDRODIOL DEHYDROGENASE EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 5.9 NEL-LIKE 2 EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 5.10 HUMAN TUMOUR ANTIGEN L6 EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 5.11 NOR1 EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 5.12 NFKB2 EXPRESSION IN LEUKAEMIC CELL LINES
FIGURE 5.13 SMARCD3 EXPRESSION IN LEUKAEMIC CELL LINES

TABLE 5.1 CELL LINES USED FOR AFFYMETRIX GENECHIP ANALYSIS
TABLE 5.2 FUNCTION OF GENES UP-REGULATED WITH HOX11 EXPRESSION
TABLE 5.3 SCREENING OF GENE EXPRESSION LEVELS BY RT-PCR OF GENES UP-REGULATED WITH HOX11 EXPRESSION

Chapter Six
FIGURE 6.1 LUCIFERASE PROMOTER CONTRUCTS
FIGURE 6.2 ANALYSIS OF HOX11 PROTEIN EXPRESSION IN TRANSIENT TRANSFECTATION ASSAYS
FIGURE 6.3 COMPARISON OF β-GALACTOSIDASE INTERNAL CONTROL CONSTRUCTS
FIGURE 6.4 THE EFFECT OF HOX11 ON β-GALACTOSIDASE ACTIVITY IS INDEPENDENT OF THE PROMOTER TESTED AND CAN BE ACCOUNTED FOR BY EXPRESSING RATIOS OVER THE pGL3BASIC EMPTY VECTOR CONTROL
FIGURE 6.5 ANALYSIS OF THE TRANSCRIPTIONAL REGULATION OF THE C-KIT, VEGFC AND DIHYDRODIOL DEHYDROGENASE PROMOTERS BY HOX11 AND THE ΔH3-HOX11 MUTANT
FIGURE 6.6 ANALYSIS OF THE TRANSCRIPTIONAL REGULATION OF THE NOR1 PROMOTER AND THE SMARCD3 PUTATIVE PROMOTER BY HOX11

Appendix
TABLE 1 EXPRESSION OF HOX11 IN T-CELL LINES
TABLE 2 EXPRESSION OF HOX11 IN HAEMATOPOIETIC TISSUES AND CELL LINES
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 3A</td>
<td>OPTIMIZATION OF THE CLONTECH PCR SELECT™ -cDNA SUBTRACTION KIT</td>
</tr>
<tr>
<td>TABLE 3B</td>
<td>OPTIMIZATION OF THE CLONTECH PCR SELECT™ -cDNA SUBTRACTION KIT</td>
</tr>
<tr>
<td>TABLE 4</td>
<td>KNOWN GENES IN THE FIFTY MOST UP-REGULATED GENES IDENTIFIED BY AFFYMETRIX MICROARRAY IN THE J2E CELL LINE WITH THE EXPRESSION OF HOX11 AND CORRESPONDING SIGNAL LOG RATIO VALUES</td>
</tr>
<tr>
<td>TABLE 5</td>
<td>KNOWN GENES IN THE FIFTY MOST UP-REGULATED GENES IDENTIFIED BY AFFYMETRIX MICROARRAY IN THE NIH3T3 CELL LINE WITH THE EXPRESSION OF HOX11 AND CORRESPONDING SIGNAL LOG RATIO VALUES</td>
</tr>
<tr>
<td>TABLE 6</td>
<td>FIFTY GENES UP-REGULATED IN THE PER-117 CLONE 9 WHEN COMPARED TO CONTROL CLONES 1 AND 2 AND CORRESPONDING SIGNAL LOG RATIO VALUES</td>
</tr>
<tr>
<td>TABLE 7</td>
<td>FIFTY GENES UP-REGULATED IN THE PER-117 CLONE 11 WHEN COMPARED TO CONTROL CLONES 1 AND 2 AND CORRESPONDING SIGNAL LOG RATIO VALUES</td>
</tr>
</tbody>
</table>
Thesis Publications

Thesis Presentations

Oral Presentations

“Dissecting a Role for HOX11 in Tumour Development”
Inaugural 2nd Annual Australian Society for Medical Research Symposium, Perth, Western Australia.

2002

“The Role That the Transcription Factor HOX11 Plays in Tumorigenesis”
Postgraduate Seminar Program
Division of Health Sciences, Murdoch University, Perth, Western Australia.

2003

Poster Presentations

“Utilization of GeneChip Technology to Dissect a Role for HOX11 in Tumour Development”
Lorne Cancer Conference, Lorne, Victoria.

2003

“Guanine Nucleotide Dissociation Inhibitor Beta: A Potential HOX11 Target Gene”
Lorne Cancer Conference, Lorne, Victoria.

2002

“Identification of HOX11 Target Genes Using Microarray Technology and Representational Difference Analysis”
Postgraduate Poster Day
Division of Health Sciences, Murdoch University, Perth, Western Australia.

2001
“Searching for Downstream Target Genes of the Oncoprotein HOX11”
Postgraduate Poster Day
Division of Health Sciences, Murdoch University, Perth, Western Australia.

2000

“Searching for Genes Regulated by HOX11”
Postgraduate Poster Day
Division of Health Sciences, Murdoch University, Perth, Western Australia.

1999