A SEARCH FOR SHORTER, MORE CONVERGENT ROUTES TO ENANTIOPURE NAPHTHOPYRANS RELATED TO THE APHID INSECT PIGMENTS

THIS THESIS IS PRESENTED FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY OF MURDOCH UNIVERSITY

BY

JOSHUA DAVID MCMANUS

B.Sc.(Hons.) Murdoch University

2007
I declare that this thesis is my own account of my research and contains, as its main content, work that has not been submitted for a degree at any tertiary institution.

Joshua McManus

October 2007
Table of Contents

Abstract .. v
Acknowledgements .. viii
Abbreviations .. viii

1 Introduction ... 1
 1.1 General .. 1
 1.2 Previous Syntheses ... 4
 1.2.1 The Eleutherins .. 4
 1.2.2 Kalafungin and the Nanaomycins .. 7
 1.3 Naphthopyranquinones as Potential Bioreductive Alkylating and Dialkylating Agents .. 13
 1.4 The Synthesis of Racemic Quinone A, Quinone A' and Deoxyquinone A............. 15
 1.5 The Syntheses in Enantiopure Form of Quinone A, Quinone A', and Their Two C-3 Epimers ... 19
 1.6 Further Investigations into Shorter, More Convergent Routes to Enantiopure Quinone A and Quinone A' .. 30

2 Chapter 2 .. 41
 2.1 Overview and Synthetic Strategy ... 41
 2.2 Choice of Protecting Group for Oxygen at C-4 of the Phenol 46
 2.3 Synthesis of 3-Bromo-4-methoxyphenol 168 and Subsequent Reactions 49
 2.4 Synthesis of 3-Chloro-4-methoxyphenol 192 and Subsequent Reactions 61
 2.5 Conclusion .. 67
 2.6 Experimental .. 68
 2.6.1 General procedures .. 68
 2.6.2 Methods and spectral data .. 70

3 Chapter 3 .. 88
 3.1 Overview and Synthetic Strategy ... 88
 3.2 Synthesis of 1-Methoxy-1,3-bis(trimethylsiloxy)buta-1,3-diene 80 92
 3.3 Syntheses of the 2-Benzopyrans 117, 118 and 212 ... 93
 3.4 Syntheses of Quinones 120, 121 and 210 ... 105
 3.5 Protection of the Quinones 120, 121 and 210 as their Acetates 108
 3.6 Protection of the Quinones 120, 121 and 210 as their Methoxymethyl Ethers 111
 3.7 Bromination of the Quinone 210 ... 114
 3.8 Conclusion .. 117
 3.9 Experimental .. 118
 3.9.1 Methods and Spectral Data .. 118

4 Chapter 4 .. 141
 4.1 Overview and Synthetic Strategy ... 141
 4.2 Preparation of the Chiral Aldehyde 108 ... 144
 4.3 Synthesis of 5,7-Dibenzoyloxy-4-methoxynaphthalene-1-ol 242 146
 4.4 Diastereoselective Arylation of Chiral Aldehyde 108 By Metal Phenolates of Compound 242 ... 152
 4.5 Synthesis of 4,5,7-Trimethoxynaphthalene-1-ol 246 .. 162
4.6 Allylation Route as an Alternative to Diastereoselective Arylation of Chiral Aldehydes.. 163
4.7 Diastereoselective Arylation of Chiral Aldehyde 108 By Metal Phenolates of Compound 246.. 171
4.8 Conclusion .. 186
4.9 Future Work ... 186
4.10 Experimental .. 188
 4.10.1 Methods and Spectral Data .. 188
5 References ... 210
6 Appendix ... 215
Abstract

The naphtho[2,3-c]pyran ring system is generally found amongst natural products as the 5,10- or 6,9-quinones. These compounds display a wide range of biological activities, and as such, have been synthesised by various research groups. The synthetic work described in this thesis is directed towards finding shorter, more convergent routes to enantiopure quinone A 10, quinone A' 11 and quinone-pm 13, three derivatives of the aphid insect pigments protoaphin-fb 6, protoaphin-sl 7 and protoaphin-pm 9, respectively.

The first chapter describes the previous syntheses of some naphtho[2,3-c]pyrans including those relating to the aphid insect pigment derivatives. Also detailed is the ability of these naphthopyranquinones to act as potential bioreductive alkylating and dialkylating agents. The latter part of the chapter records some of the previously achieved assemblies of quinones A 10 and A' 11 in both racemic and enantiopure form, as well as the only synthesis of enantiopure quinone-pm 13.

Chapter 2 involves the preparation of regioselectively halogenated aryldioxolanes starting with the allylation of brominated and chlorinated phenols. The isomerisation of these dioxolanes into the corresponding halogenated 2-benzopyrans is then investigated.

Chapter 3 examines the regioselectivity of the Diels-Alder reaction between protected benzopyranquinones and the substituted diene 1-methoxy-1,3-bis(trimethylsilyloxy)-buta-1,3-diene 80. Such protection involves preparing the acetates and methoxymethyl ethers of
the benzopyranquinones. The latter part of the chapter describes the direct bromination of benzopyranquinones.

Chapter 4 reports on the stereoselective reaction between metal phenolates and the chiral aldehyde 108 to subsequently afford naphthyldioxolanes 264, 291, 292 and 295. The rearrangement reaction of the derived naphthyldioxolane 295 is then investigated.
Acknowledgements

My sincere thanks and appreciation to my supervisor, Professor Robin Giles, for his efforts throughout this project. His guidance and support have been invaluable.

Thanks also to the following people:

- The technical staff at Murdoch University, in particular Andrew Foreman.
- Doug Clarke for his friendly help and enjoyable conversations over the years.
- Murdoch University for financial support.
- My colleagues Jimmy Tan and Allan Knight for all the humorous and enjoyable times spent together at Murdoch.
- Special thanks to my family for all their love and support throughout all the years of my studies.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
<td>acetyl</td>
</tr>
<tr>
<td>dba</td>
<td>(E,E)-dibenzylidene acetone</td>
</tr>
<tr>
<td>(DHQ)$_2$-PHAL</td>
<td>Bis(dihydroquinino)phthalazine</td>
</tr>
<tr>
<td>(DHQD)$_2$-PHAL</td>
<td>Bis(dihydroquinidino)phthalazine</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>EtOAc</td>
<td>ethyl acetate</td>
</tr>
<tr>
<td>Ether</td>
<td>diethyl ether</td>
</tr>
<tr>
<td>Glc</td>
<td>glucoside</td>
</tr>
<tr>
<td>i-Pr</td>
<td>isopropyl</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>mp</td>
<td>melting point</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>TMS</td>
<td>tetramethylsilane</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>Ts</td>
<td>toluenesulfonyl</td>
</tr>
</tbody>
</table>