Reliable Load-Balancing Routing for Resource-Constrained Wireless Sensor Networks

A thesis submitted for the degree of
Doctor of Philosophy
by
Khaled Daabaj

Murdoch University
2012
Declaration

To the best of my knowledge, this thesis contains no material previously published by any other person except where due acknowledgment has been made.

This thesis contains no material which has been accepted for award of any other degree in any other university.

Signature:

Date: February 07, 2012
Dedicated to my parents, family and friends for their support…
Abstract

Wireless sensor networks (WSNs) are energy and resource constrained. Energy limitations make it advantageous to balance radio transmissions across multiple sensor nodes. Thus, load balanced routing is highly desirable and has motivated a significant volume of research. Multihop sensor network architecture can also provide greater coverage, but requires a highly reliable and adaptive routing scheme to accommodate frequent topology changes. Current reliability-oriented protocols degrade energy efficiency and increase network latency. This thesis develops and evaluates a novel solution to provide energy-efficient routing while enhancing packet delivery reliability. This solution, a reliable load-balancing routing (RLBR), makes four contributions in the area of reliability, resiliency and load balancing in support of the primary objective of network lifetime maximisation. The results are captured using real world testbeds as well as simulations. The first contribution uses sensor node emulation, at the instruction cycle level, to characterise the additional processing and computation overhead required by the routing scheme. The second contribution is based on real world testbeds which comprises two different TinyOS-enabled sensor platforms under different scenarios. The third contribution extends and evaluates RLBR using large-scale simulations. It is shown that RLBR consumes less energy while reducing topology repair latency and supports various aggregation weights by redistributing packet relaying loads. It also shows a balanced energy usage and a significant lifetime gain. Finally, the forth contribution is a novel variable transmission power control scheme which is created based on the experience gained from prior practical and simulated studies. This power control scheme operates at the data link layer to dynamically reduce unnecessarily high transmission power while maintaining acceptable link reliability.
Publications

Journal Articles:

Book Chapters:

Conference Papers:

Posters and Demos:

Table of Contents

Abstract ... v
Publications .. vi
Table of Contents ... viii
Acknowledgements ... xv

CHAPTER 1: INTRODUCTION ... 1
1.1. Background ... 1
1.2. Challenges and Key Design Issues ... 2
1.3. Scope of The Thesis ... 4
1.4. Problem Definition ... 6
1.5. Research Methodology ... 8
1.6. Organisation of The Thesis .. 10

CHAPTER 2: LITRATURE REVIEW ... 11
2.1 Background ... 11
2.2 Reliable Data Delivery ... 12
 2.2.1 Link Reliability Metrics .. 12
 2.2.2 Mote-Dominated TinyOS-Enabled Reliability-Oriented Routing 18
2.3 Energy-Balancing for Network Lifetime Maximization 26
 2.3.1 Energy Cost Metrics ... 26
 2.3.2 Many-to-One In-Network Data Aggregation .. 30
 2.3.3 Energy-Efficient Load-Balancing Routing ... 33
2.4 Summary ... 37

CHAPTER 3: RELIABLE LOAD-BALANCING ROUTING (RLBR) 38
3.1 Background ... 38
3.2 Related Work ... 39
3.3 Routing Framework ... 42
3.4 Network Configuration and Maintenance................................. 45
 3.4.1 Routing Tree Formation ... 45
 3.4.2 Phases of Routing Tree Construction 48
 3.4.3 Adaptive Parent Selection Process 50
 3.4.4 Routing Loops Prevention Strategy 55
 3.4.5 Resilience to Link Fluctuations 56
3.5 Balanced Data Dissemination and Collection............................. 57
 3.5.1 Load-Aware Aggregation ... 57
 3.5.2 Bounding Relaying Deadlines 60
3.6 Reliable Energy-Balancing Routing 62
 3.6.1 Route Average Dissipated Energy 62
 3.6.2 Energy and Reliability Probability 64
 3.6.3 Packet Relaying Probability Model 66
 3.6.4 Energy Balancing Model .. 67
3.7 Preliminary Analysis of Routing and Computation Overhead 70
3.8 Conclusion .. 76

CHAPTER 4: INDOOR TESTBED EXPERIMENTS................................. 78
4.1 Background and Motivations ... 78
4.2 Related Work .. 79
4.3 Implementation Platform: Mica2 Motes 81
 4.3.1 Platform Details and Experimental Features 81
 4.3.2 Underlying Layers (The Physical and Mac Layers) 84
4.4 Tinyos-Based Programming Environment 87
 4.4.1 Component-Based Programming.................................... 87
6.4.1 Model Description and Assumptions ... 153
6.4.2 Importance of Deployed Sensor Nodes ... 154
6.4.3 Energy Consumption Per Relaying Sensor Node 156
6.5 Performance Evaluation .. 159
 6.5.1 Evaluation Metrics .. 160
 6.5.2 Simulations Settings and Parameters ... 161
 6.5.3 Simulation Results ... 163
6.6 Conclusion .. 168

CHAPTER 7: PER LINK TRANSMISSION POWER CONTROL 169
7.1 Background And Motivation .. 169
7.2 Design Issues ... 170
7.3 Related Work ... 171
7.4 Design And Implementation .. 172
 7.4.1 Energy Model .. 172
 7.4.2 Per Link Transmission Power Model ... 173
 7.4.3 Scheme Implementation ... 176
7.5 Performance Evaluation ... 179
 7.5.1 Simulation Settings And Parameters ... 179
 7.5.2 Results ... 180
7.6 Conclusion .. 182

CHAPTER 8: CONCLUSION AND FUTURE WORK 184
8.1 Summary of Contributions .. 184
8.2 Future Work ... 185

REFERENCES ... 187
List of Figures

Figure 2.1 Various routes for communication between nodes A and H, labelled with energy costs per packet for each link and available battery capacity for each node [106].. 26
Figure 3.1 Route Cost Computation .. 39
Figure 3.2 The RLBR Scheme Framework .. 43
Figure 3.3 Example of Routing Tree Formation .. 46
Figure 3.4 Frame Format of the RLBR Message ... 47
Figure 3.5 Load-Aware Aggregation .. 58
Figure 3.6 Bounding Relaying/Aggregating Deadlines .. 60
Figure 3.7 Calculating the Energy Cost over Route r .. 63
Figure 3.8 Routing/Computation Overhead Estimations on Mica2 ... 74
Figure 3.9 Routing/Computation Overhead Estimations on TelosB ... 74
Figure 4.1 Crossbow Mica2 868/916MHz Mote (MPR400CB) [14,35]... 82
Figure 4.2 Basic Blocks of nesC Application .. 88
Figure 4.3 The Implemented TinyOS Modules of the RLBR Scheme .. 91
Figure 4.4 Indoor Deployment Topology ... 100
Figure 4.5 The Effect of Short Distances and Motes Orientations on Channel Quality .. 104
Figure 4.6 Indoor Measurements of CC1000’s RSSI vs. Distance ... 105
Figure 4.7 Indoor Measurements of CC1000’s RSSI vs. Packet Length ... 106
Figure 4.8 Pure Reliability-Oriented Routing in MintRoute Protocol .. 108
Figure 4.9 The Effect of Link Failure Rate on Packet Reception ... 110
Figure 4.10 Average Throughput (Kbits/sec) ... 111
Figure 4.11 Throughput vs. Hop Count .. 112
Figure 4.12 Two-Way Per-Hop Communication Overhead [54] ... 112
Figure 4.13 Load-Balancing: Average PRR vs. Traffic Loads.. 113
Figure 4.14 Average Dissipated Energy due to Link Failures ... 115
Figure 4.15 Average Dissipated Power due to Topological Changes .. 116
Figure 4.16 The Effect of Traffic Load on Energy Balancing ... 117
Figure 5.1 Crossbow TelosB 2.4GHz Mote (TPR2420CA) [86] .. 123
Figure 5.2 IEEE802.15.4 MAC Topologies .. 125
Figure 5.3 Outdoor Deployment Topology ... 130
Figure 5.4 Asymmetric Link Problem .. 136
Figure 5.5 Route Configuration Overhead ... 137
Figure 5.6 Average Delivery Rate vs. Link Failures ... 139
Figure 5.7 Average Number of Route Messages per Sensor Node 140
Figure 5.8 Responsiveness to Route Recovery .. 141
Figure 5.9 Packet Delivery Performance over Lossy Links 142
Figure 5.10 Per-Hop Packet Loss in Grid Topology .. 143
Figure 5.11 Average Packet Delivery Cost (1/η) ... 146
Figure 6.1 Many-to-One Nearest Neighbour Routing ... 149
Figure 6.2 Homogeneous Sensor Nodes with Fixed Transmission Powers 154
Figure 6.3 Importance of Deployed Sensor Nodes .. 155
Figure 6.4 Components of Communication Model ... 156
Figure 6.5 The Average Network Lifetime (Seconds) .. 163
Figure 6.6 The Number of Exhausted Nodes during Simulation Time 164
Figure 6.7 The Average Dissipated Energy ... 165
Figure 6.8 Sensor Node’s Average Residual Energy .. 166
Figure 6.9 The Packet Delivery Ratio .. 167
Figure 6.10 The End-to-End Packet Transfer Delay .. 168
Figure 7.1 Overview of the Predictive Model ... 173
Figure 7.2 The Relative Dissipated Energy for Transmissions 180
Figure 7.3 The Network Lifetime in Terms of Operative Nodes 181
Figure 7.4 The Packet Delivery Performance over Simulation Time 182
List of Tables

Table 3.1 Estimated Energy Consumption on Mica2 Mote system 75
Table 3.2 Estimated Energy Consumption on TelosB Mote system 76
Table 4.1 Crossbow Mica2 Mote (MPR400CB) Specifications [14,35].............................. 82
Table 5.1 Crossbow TelosB Mote (TBR2420CA) Specifications [42,86]......................... 123
Acknowledgements

All praises are due to Almighty God “Allah”, Who provided me with the strength and willingness to undertake this work and the opportunity to contribute a drop in the sea of knowledge.

I am most grateful to my supervisors, Mike Dixon and Terry Koziniec. Their open doors and persistent encouragement was invaluable for the completion of this research.

Finally, these acknowledgements would not complete without appreciating the unwavering support of my family including my father, my wife and children, and the memory of my mother.