WaterMiner – Mine Water Management

ENG460 Engineering Thesis Report

Student: Brent Tobin (30494278)

November 2011

Supervisor: Mr Robert Cocks
Academic Supervisor: Dr Martin Anda
Unit Coordinator: Dr Gareth Lee

A report submitted to the School of Engineering and Energy, Murdoch University in partial fulfillment of the requirements for the degree of Bachelor of Engineering.
Abstract

In the Australian and New Zealand gold mining industry the use of water is an integral part of the entire mining process, from the initial extraction of the ore to its final processing. The way in which water is managed on site effects the running costs, extraction rates, water usage and environmental impacts. Therefore it is crucial to implement a Water Efficiency Management Plan to optimise site water management.

This study investigates the current water management strategies at four gold mines within Australia and New Zealand operated by Newmont Asia Pacific. A review of water management at each of the gold mines indentifies areas of both good water management, as well as opportunities for improvement.

A web-based information system designed for mine water management entitled WaterMiner, has been developed by the University of Queensland. The WaterMiner program has been used in this study to explore further opportunities for improving water management at each of the mine sites. The results obtained from the WaterMiner program have identified where significant improvements to water reuse and recycling can be made, and have provided recommended flows to improve these areas.

It is recommended that the suggested improvements be implemented through the use of site water management plans, to provide a smooth transition into site practices. As current water management plans are only in place at two of the study sites, KCGM and Waihi Gold, Water Efficiency Management Plans (WEMP) have been developed for the remaining two gold mines, Jundee and Tanami.

Through implementation of the WEMP’s and the suggested new flows, significant improvements in water management can be made at each site. The concluding results for each on the gold mines are as follows:
• Through the implementation of the created WEMP and recommended flows the Newmont Jundee Operation can reduce its annual water usage by 174.99ML/year, approximately 8.01%.

• By incorporating recommended flows into its current WEMP the KCGM Operation can reduce extraction from three of its major water sources by 1,479.04ML/year, approximately 31.27%.

• Development of a WEMP for the Newmont Tanami Operation, inclusive of recommended flows produced by WaterMiner, will reduce extraction rates by 329.84ML/year, approximately 17.20%.

• Implementation of new recommended flows into the current WEMP in place at the Newmont Waihi Gold operation will decrease water extraction rates by 1,031.23ML/year, approximately 14.67%.
Acknowledgements

Throughout the course of this project the following people and institutions have helped contribute to this study by providing me with assistance, knowledge, guidance and support.

I would like to send my thanks and appreciation to:

- Robert Cocks, for providing me with the opportunity to undertake this project. Your knowledge and support, along with our fortnightly meetings have been invaluable to the success of the project.

- The Centre for Water in the Minerals Industry (CWiMI), for the opportunity to freely use the WaterMiner program for this study.

- Alan Woodley, for providing technical assistance on demand whenever issues would come up with WaterMiner.

- Dr Martin Anda, for providing ongoing feedback and suggestions from the submitted project proposal and progress reports.
Contents

1 Introduction ... 1
 1.1 General Introduction ... 1
 1.2 Objectives & Scope ... 2
 1.3 Project Background & Approach ... 3
 1.4 Literature Review ... 5
 1.5 Project Management & Methodology ... 11
 1.6 Assumptions & Constraints ... 17

2 Results & Discussion .. 21
 2.1 Jundee Operation .. 21
 2.1.1 Site Description .. 21
 2.1.2 Current Site Water Management .. 22
 2.1.3 WaterMiner Results & Analysis .. 23
 2.1.4 Proposed Water Management Strategies .. 33
 2.1.5 Recommendations .. 42
 2.2 KCGM ... 44
 2.2.1 Site Description .. 44
 2.2.2 Current Site Water Management .. 44
 2.2.3 WaterMiner Results & Analysis .. 45
 2.2.4 Recommendations .. 52
 2.3 Tanami Operation .. 54
 2.3.1 Site Description .. 54
 2.3.2 Current Site Water Management .. 54
 2.3.3 WaterMiner Results & Analysis .. 55
2.3.4 Proposed Water Management Strategies 63
2.3.5 Recommendations ... 72

2.4 Waihi Gold .. 74
 2.4.1 Site Description .. 74
 2.4.2 Current Site Water Management 74
 2.4.3 WaterMiner Results & Analysis 75
 2.4.4 Recommendations ... 82

3 Conclusion .. 84

4 Recommendations For Future Work 86

5 References ... 87

Appendix A Jundee WaterMiner Results 89
Appendix B KCGM WaterMiner Results 97
Appendix C Tanami WaterMiner Results 102
Appendix D Waihi Gold WaterMiner Results 109
Figures & Tables

Figures

Figure 1 Site Locations ...4
Figure 2 Total Water Extraction..6
Figure 3 Water Recycling Rates..7
Figure 4 Newmont Sitewide Planning Tool..8
Figure 5 Comparison of Water Efficiencies ..10
Figure 6 Project Gantt Chart ...12
Figure 7 Monthly & Yearly Rainfall Data for Jundee15
Figure 8 Evaporation Rates & Runoff-to-Rainfall Coefficients15
Figure 9 Jundee WaterMiner Flow Chart ...25
Figure 10 KCGM WaterMiner Flow Chart ..46
Figure 11 Tanami WaterMiner Flow Chart ..56
Figure 12 Tanami Billabong Wellfield Discharge 1986 - 200766
Figure 13 Waihi Gold WaterMiner Flow Chart76

Tables

Table 1 Water Classification Table ..11
Table 2 Waihi Gold – Site Water Snapshot ...16
Table 3 Project Constraints ...19
Table 4 Jundee Water Account ..27
Table 5 Jundee Replaced Flows ..27
Table 6 Jundee Additional Recommended Transfers30
Table 7 Jundee Task Flow Summary ...32
Table 8 Jundee Water Usage 1997 - 2007..........................36
Table 9 KCGM Water Account..47
Table 10 KCGM Replaced Flows.....................................48
Table 11 KCGM Additional Recommended Transfers..............49
Table 12 KCGM Task Flow Summary.................................51
Table 13 Tanami Water Account....................................57
Table 14 Tanami Replaced Flows....................................58
Table 15 Tanami Additional Recommended Transfers...........60
Table 16 Tanami Task Flow Summary.................................62
Table 17 Waihi Gold Water Account.................................77
Table 18 Waihi Gold Replaced Flows.................................78
Table 19 Waihi Gold Additional Recommended Transfers.........79
Table 20 Waihi Gold Task Flow Summary............................81