Mine Site Village Carbon Emissions & Engineering Offset Solutions

Maxime Ploumis

A report submitted to the School of Engineering and Energy, Murdoch University in partial fulfilment of the requirements for the degree of Bachelor of Engineering

Date issued: 25/11/2011

Business Supervisor: Paul Hardisty, Global Director of EcoNomics WorleyParsons

Academic Supervisors: - Dr Martin Anda, Chair of Environmental Engineering
- David Goodfield, PhD Candidate
Acknowledgments

Without the financial support provided by WorleyParsons as well as the invaluable support of Paul Hardisty and his wealth of knowledge and industry experience, the Internship and report would not have been possible. I am sincerely thankful for the opportunity and experience.

I owe my deepest gratitude to my academic supervisors, Martin Anda and David Goodfield, for their encouragement, guidance and support during the entire progression of this project.

I would like to especially acknowledge Antony Piccinini for his guidance, in-depth experience, highly valued recommendations and time in assisting me with this project.

I am also thankful to all the following people whom have made time available to assist in a number of ways, to make the completion of this project possible:

Professor Trevor Pryor whose enormous knowledge about renewable energy power systems as well as HOMER has greatly contributed to this project.

Colin Hayes and Steve Lucks for having assisted me with the geothermal section of this study.

Bruce Clare and Wayne Brindley with their expertise on mine sites’ power systems.

Brett Rice, James Rhee and Chem Nayar for providing me great recommendations and accurate quotes from the different product they sell.

Paul Wilkinson and Bruce Kingston for their help with the commissioning of Mount Magnet Gold village’s monitoring system.
Executive Summary

This report aims to investigate solutions for carbon neutrality in mine site village developments by assisting David Goodfield (DG) in undertaking several essential tasks associated with his PhD, using Mount Magnet Gold (MMG) village as a case study.

In order to assess the potential of Renewable Energy (RE) as a carbon offset solution in the current power system, software called REMAX was specially developed. HOMER was used to assess the potential of RE in standalone power systems. A standalone study was undertaken, as major capital cost savings were identified if the transmission line between the mine power system and the village was removed (≈$250,000 per kilometre). The sensitivity of MMG village’s power system, being the mine’s power system was found to be somewhere between 50 and 100 kW. Due to these sensitivities and the small ratio of the village within the load (2.46%), it was found that the potential of RE in the current power system would be very low. The standalone configuration was found to be more economically viable than the current power system, if the village is located more than 4 kilometres (km) away from the mine power system (assuming cost of the line ≈$250,000 per kilometre). Findings also show that a wind diesel hybrid power system is more economically viable than the diesel, only if the project life is more than 7, 5, 4 and 3 years for a project starting in January 2012, 2014, 2016 and 2018 respectively. However, in the situation where the standalone system is powered by only diesel generators, the carbon emission was found to be higher and was not suitable for this project.

Given the high energy usage of mining villages’ air conditioning (AC) systems, the potential of using a Ground Source Heat Pump (GSHP) system instead of currently used standard reverse cycle AC systems was also investigated. GSHPs were found to have a high potential as a carbon offset solution in mine site villages, with payback period under six years possible. Nevertheless, the system needs to be sized appropriately and used in high demand locations (≈20 hours a day).

Another task associated with this project was to undertake the village’s energy audit and monitoring system commissioning which were successfully undertaken during a site visit in the third week of October 2011. Also, the calculation of the embodied energy of two buildings (donga and kitchen) from the village was undertaken using a life cycle assessment software (eTool), that was previously investigated.
Nomenclature

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Air conditioning</td>
</tr>
<tr>
<td>BOM</td>
<td>Bureau of meteorology</td>
</tr>
<tr>
<td>DG</td>
<td>David Goodfield</td>
</tr>
<tr>
<td>CAPEX</td>
<td>Capital expenditure</td>
</tr>
<tr>
<td>CO2</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>COP</td>
<td>Coefficient of performance</td>
</tr>
<tr>
<td>E</td>
<td>Enercon</td>
</tr>
<tr>
<td>FWS</td>
<td>Four Wind Seasons</td>
</tr>
<tr>
<td>GSHP</td>
<td>Ground source heat pump</td>
</tr>
<tr>
<td>LGCs</td>
<td>Large-scale generation certificates (RECs)</td>
</tr>
<tr>
<td>OPEX</td>
<td>Operational expenditure</td>
</tr>
<tr>
<td>MM</td>
<td>Mount Magnet</td>
</tr>
<tr>
<td>MMG</td>
<td>Mount Magnet gold</td>
</tr>
<tr>
<td>NPC</td>
<td>Net Present Cost</td>
</tr>
<tr>
<td>NPV</td>
<td>Net Present Value</td>
</tr>
<tr>
<td>PL</td>
<td>Project life</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaic</td>
</tr>
<tr>
<td>RE</td>
<td>Renewable energy</td>
</tr>
<tr>
<td>WT</td>
<td>Wind turbine</td>
</tr>
<tr>
<td>WTP</td>
<td>Water treatment plant</td>
</tr>
<tr>
<td>WWTP</td>
<td>Waste water treatment plant</td>
</tr>
</tbody>
</table>
Table of Content

1 Introduction ... 1

2 Literature review .. 2
 2.1 Potential of renewable energy as a carbon offset solution in mine site villages 2
 2.2 Case studies ... 3
 2.3 Geothermal air conditioning.. 4

3 Mount Magnet gold village renewable energy power system 6
 3.1 Mount Magnet gold village background .. 6
 3.2 Renewable energy power systems ... 7
 3.2.1 Predicted load .. 8
 3.2.2 Current power system background .. 11
 3.2.3 Identification of renewable energies and resource assessment 14
 3.2.4 Technology identification and selection ... 33
 3.2.5 RE power system analysis ... 36

4 Geothermal air-conditioning potential in mining villages .. 69
 4.1 Current system background .. 69
 4.2 Geothermal heat pump technology .. 71
 4.2.1 Ground water systems .. 72
 4.2.2 Ground heat exchanger systems .. 73
 4.2.3 Surface water heat exchanger system .. 74
 4.3 GSHP at MMG village ... 75
 4.4 GSHP system sizing ... 77
 4.4.1 Load calculation .. 77
 4.4.2 System sizing and cost estimations ... 78
 4.4.3 Potential of GSHP at MMG village analysis .. 82

5 David Goodfield’s PhD .. 92
5.1 Preparation of Monitoring Devices for MMG village... 92
5.2 Investigation of different software for operational and embodied energy calculation of MMG village.. 92
5.3 Diagram modification... 94
5.4 MMG village monitoring system commissioning... 95
 5.4.1 MMG village site visit and monitoring system commissioning 95
 5.4.2 Commissioning results.. 98
5.5 MMG village embodied and operational energy calculations.......................... 100
5.6 MMG village energy audit .. 101
6 Recommendations ... 102
 6.1 Recommendations for the full completion of this study 102
 6.2 Recommendations for future interest ... 103
7 Conclusion .. 104
 7.1 Potential of RE power systems as a carbon emission offset solution 104
 7.2 Potential of GSHP systems as a carbon emission offset solution 105
 7.3 Recommendations ... 105
8 Reference .. 106
9 Appendix .. 110
 9.1 Case Studies ... 110
 9.1.1 Mount Cattlin ... 110
 9.1.2 Mount Isa Mines ... 111
 9.1.3 Nickel mines “X” and “Y” ... 111
 9.2 Solar resource investigation ... 113
 9.3 Wind resource investigation .. 113
 9.3.1 BOM data ... 113
 9.3.2 NASA Data .. 114
 9.4 Current power system costing ... 121
 9.5 Multi-criteria analysis ... 122
List of Figures and Tables

Figures:

Figure 1: Mount Magnet Location .. 6
Figure 2: RE potential assessment methodology used .. 7
Figure 3: MMG village electricity use forecast from June 2011 to November 2013 (BEC engineering, 2011) .. 8
Figure 4: Energy use repartition at MMG mine (BEC engineering, 2011) 9
Figure 5: MMG village Daily Electricity use assumption for February 10
Figure 6: MMG village Daily Electricity use assumption for September 10
Figure 7: Mount Magnet gold mine power system ... 11
Figure 8: Mount Magnet gold mine power system and loads ... 12
Figure 9: Resource assessment methodology used ... 14
Figure 10: Annual daily average solar exposure in Australia (ERIN, 2008) 15
Figure 12: Predicted load and solar resource seasonal variation comparison over the year (BOM, 2011 and BEC, 2011) .. 17
Figure 13: Australia’s rainfall map (Kuwahata et al. 2010) .. 19
Figure 14: MM topographic map (One line represents 20m elevation) (Google Maps, 2011) 19
Figure 15: Mean wind speed at 80m above ground level in Australia (ERIN, 2008) 20
Figure 16: Monthly average wind speed seasonal variation at 10m above ground surface at Mount Magnet (BOM, 2011) .. 22
Figure 17: Long term daily diurnal variation in the monthly average hourly wind speed for January, April, July and October at 10m above ground surface at Mount Magnet (BOM, 2011) .. 23
Figure 18: Annual average wind rose at 10m above ground level at Mount Magnet in m/s (BOM, 2011) .. 23
Figure 19: Frequency distribution wind speed at 10m above ground surface at Mount Magnet (BOM, 2011) .. 24
Figure 20: Wind speed cumulative probability function at 10m above ground level at Mount Magnet (BOM, 2011) .. 24
Figure 21: Weibull distribution factor estimation graph of wind speed 10m above ground surface .. 25
Figure 22: Load and wind resource seasonal variation comparison over the year (BOM, 2011) .. 26
Figure 23: Land use in Western Australia (Commonwealth of Australia, 2001) 28
Figure 24: Non-urban railway lines covered by WA rail access regime (ERA, 2011) 29
Figure 25: Western Australia crop production estimates for 2010-2011 (ABARE, 2011) 29
Figure 26: Australia’s wave resource map (Herman, 2011) .. 30
Figure 27: Ground temperature at 5km below ground surface in Australia (Ecogeneration, 2011) .. 31
Figure 28: 50th percentile of hourly tidal current speed in meter per second (Griffin et al. 2010) .. 32
Figure 100: NPC analysis of different PV array sizes with a project life of 5 years145
Figure 101: NPC analysis of different PV array sizes with a project life of 7 years146
Figure 102: NPC analysis of different PV array sizes with a project life of 9 years146
Figure 103: NPC analysis of different PV array sizes with a load factor of 1147
Figure 104: NPC analysis of different PV array sizes with a load factor of 3147
Figure 105: NPC analysis of different PV array sizes with a load factor of 6148
Figure 106: NPC analysis of different PV array sizes with a load factor of 1148
Figure 107: NPC analysis of different PV array sizes with a load factor of 3149
Figure 108: NPC analysis of different PV array sizes with a load factor of 6149
Figure 109: NPC analysis of different wind turbine configurations with a project life of 5 years ...150
Figure 110: NPC analysis of different wind turbine configurations with a project life of 9 years ...150
Figure 111: NPC analysis of different wind turbine configurations with a project life of 12 years ..151
Figure 112: NPC analysis of different wind turbine configurations with a project life of 15 years ..151
Figure 113: NPC analysis of different wind turbine configurations with a project life of 18 years ..152
Figure 114: NPC analysis of wind turbine configurations with a project life of 5 years152
Figure 115: NPC analysis of wind turbine configurations with a project life of 7 years153
Figure 116: NPC analysis of wind turbine configurations with a project life of 8 years153
Figure 117: NPC analysis of wind turbine configurations with a project life of 9 years154
Figure 118: NPC analysis of wind turbine configurations with a project life of 12 years154
Figure 119: NPC analysis of wind turbine configurations with a project life of 15 years155
Figure 120: NPC analysis of wind turbine configurations with a project life of 18 years ...155
Figure 121: NPC analysis of wind turbine configurations with a project life of 5 years156
Figure 122: NPC analysis of wind turbine configurations with a project life of 7 years156
Figure 123: NPC analysis of wind turbine configurations with a project life of 8 years157
Figure 124: NPC analysis of wind turbine configurations with a project life of 9 years157
Figure 125: NPC analysis of wind turbine configurations with a project life of 12 years ...158
Figure 126: NPC analysis of wind turbine configurations with a project life of 15 years ...158
Figure 127: NPC analysis of wind turbine configurations with a project life of 18 years ...159
Figure 128: NPC analysis of wind turbine configurations with a project life of 5 years159
Figure 129: NPC analysis of wind turbine configurations with a project life of 7 years 160
Figure 130: NPC analysis of wind turbine configurations with a project life of 8 years 160
Figure 131: NPC analysis of wind turbine configurations with a project life of 9 years 161
Figure 132: NPC analysis of wind turbine configurations with a project life of 12 years 161
Figure 133: NPC analysis of different wind turbine configurations with a load factor of 1.62
Figure 134: NPC analysis of different wind turbine configurations with a load factor of 3.162
Figure 135: NPC analysis of different wind turbine configurations with a load factor of 6.163
Figure 136: NPC analysis of different wind turbine configurations with a load factor of 1.163
Figure 137: NPC analysis of different wind turbine configurations with a load factor of 3.164
Figure 138: NPC analysis of different wind turbine configurations with a load factor of 6.164
Figure 139: NPC analysis of different wind turbine and PV array configuration with a project life of 12 years ... 165
Figure 140: NPC analysis of different wind turbine and PV array configuration with a project life of 15 years ... 165
Figure 141: NPC analysis of different wind turbine and PV array configuration with a project life of 18 years ... 166
Figure 142: NPC analysis of different wind turbine and PV array configuration with a project life of 5 years .. 166
Figure 143: NPC analysis of different wind turbine and PV array configuration with a project life of 7 years ... 167
Figure 144: NPC analysis of different wind turbine and PV array configuration with a project life of 8 years ... 167
Figure 145: NPC analysis of different wind turbine and PV array configuration with a project life of 9 years ... 168
Figure 146: NPC analysis of different system configuration with a project life of 5 years .. 168
Figure 147: NPC analysis of different system configuration with a project life of 7 years .. 169
Figure 148: NPC analysis of different system configuration with a project life of 8 years .. 169
Figure 149: NPC analysis of different system configuration with a project life of 9 years .. 170
Figure 150: HOMER output screen shot for project starting in January 2012 170
Figure 151: HOMER output screen shot for project starting in January 2014 171
Figure 152: HOMER output screen shot for project starting in January 2016 171
Figure 153: HOMER output screen shot for project starting in January 2018 171
Figure 154: HOMER output screen shot for project starting in January 2012 and an average daily load of 8568 kWh... 172
Figure 155: HOMER output screen shot for project starting in January 2012 and an average daily load of 8568 kWh (Graph representation) ... 172
Figure 156: HOMER output screen shot for project starting in January 2012 and an average daily load of 17136 kWh ... 173
Figure 157: HOMER output screen shot for project starting in January 2012 and an average daily load of 17136 kWh (Graph representation) ... 173
Figure 158: SimaPro “Wooden Shed” tutorial output summary (SimaPro, 2011) 176
Figure 159: GaBi “Steel Paper Clip” tutorial plan (GaBi, 2011) .. 176
Tables:

Table 1: MMG village load characteristics (BEC engineering, 2011) ... 9
Table 2: Generators Powering MMG Mine Operations and Village (Cummins Power, 2007) 12
Table 3: Mount Magnet gold mine power system leasing associated cost (BEC engineering, 2011) ... 13
Table 4: Power supply information (Matricon, 2011M) .. 13
Table 5: Mount Magnet best, worst and average annual mean monthly global solar exposure from 1990 to 2010 (BOM, 2011) ... 16
Table 6: Range test specification (AWS, 1997) ... 21
Table 7: Monthly and annual average wind speed at 10m above ground surface at Mount Magnet (BOM, 2011) ... 22
Table 8: Selected Social, Environmental and Economic Criteria for MMG village RE power system (Hardisty, 2010 and Wang et al. 2009) ... 34
Table 9: MMG village RE power system project stakeholders ... 34
Table 10: MCA final outcome .. 36
Table 11: Project information inputs .. 39
Table 12: REMAX: Project information inputs .. 39
Table 13: REMAX: Generator information inputs ... 40
Table 14: PV information inputs .. 42
Table 15: Four Wind Seasons 50 and 100 kW wind turbines information inputs (WT: Wind Turbine and FWS: Four Wind Seasons) ... 42
Table 16: REMAX input and output information ... 44
Table 17: REMAX’s outputs validation for current power system for 2012 ... 46
Table 18: REMAX’s PV and wind turbine outputs validation with HOMER .. 46
Table 19: Projected installed cost of the investigated wind turbine ... 53
Table 20: HOMER output summary for project starting in January 2012 (Generators: low load cycle REGEN Power generators (150kW + 100kW + 50kW)) .. 57
Table 21: HOMER output summary for project starting in January 2014 (Generators: low load cycle REGEN Power generators (150kW + 100kW + 50kW)) .. 61
Table 22: HOMER output summary for project starting in January 2016 (Generators: low load cycle REGEN Power generators (150kW + 100kW + 50kW)) .. 63
Table 23: HOMER output summary for project starting in January 2018 (Generators: low load cycle REGEN Power generators (150kW + 100kW + 50kW)) .. 64
Table 24: MMG village AC unit number and size (Based on cooling capacity) .. 70
Table 25: Current AC system installed cost estimation (SPLIT 4 YOU, 2011) ... 70
Table 26: Cooling load calculation ... 78
Table 27: MMG village GSHP number and size (Cell coloured in yellow are water to water heat pumps and uncoloured cell water to air heat pumps) ... 79
Table 28: Available size of GSHP in Australia .. 80
Table 29: Horizontal and vertical ground loop sizing and costing guidelines (McQuay, 2002) 80
Table 30: MMG village GSHP cost estimation (Cummings, 2008) ... 81
Table 31: Payback period estimation comparison with current system (NPV: Net Present Value) ... 83
Table 32: 50kW GSHP system payback period estimation comparison with a current 50kW AC system operating 20 hours a day .. 86
Table 33: 50kW GSHP system payback period estimation comparison with a current 50kW AC system operating 10 hours a day .. 89
Table 34: Investigated software and comments .. 93
Table 35: Weibull distribution factor graph calculation ... 113
Table 36: Monthly and annual average wind speed at 10m above ground surface at Mount Magnet (NASA, 2011) ... 114
Table 37: Weibull distribution factor graph calculation .. 118
Table 38: Current Power System Predicted Cost for 2012 .. 121
Table 39: Criteria weighting .. 122
Table 40: Rating guideline .. 123
Table 41: MCA final outcome (Afgan N and Carvalho M, 2002) .. 124
Table 42: Project’s contact ... 126
Table 43: Wind turbines costs (Better Generation, 2009 and emails from contacts) 128
Table 44: PV modules costs including GST (Apollo Energy, 2011) .. 131
Table 45: Inverter cost (Apollo Energy, 2011) ... 132
Table 46: Wind turbines input information .. 136
Table 47: Installed PV array cost per kW investigation ... 137
Table 48: Natural gas and diesel carbon content ... 138
Table 49: Monitoring equipment information (OneTemp, 2011) .. 174
Table 50: Outdoor energy audit .. 177
Table 51: Laundry energy audit .. 177
Table 52: Donga energy audit .. 178
Table 53: Administration energy audit ... 178
Table 54: Toilet energy audit ... 179
Table 55: Recreational room energy audit .. 180
Table 56: Gymnasium energy audit ... 180
Table 57: Kitchen energy audit ... 181
Table 58: WTP energy audit .. 183
Table 59: WWTP energy audit ... 183
Table 60: Ice room energy audit .. 184