A report submitted to the school of Engineering and Energy, Murdoch University in partial fulfilment of the requirements for the degree of Bachelor of Engineering
Abstract

BHP Billiton Worsley Alumina and Murdoch University have a strong relationship, and as a result a selection of students studying their final year of Instrumentation and Control Engineering have the opportunity to complete an internship at the Worsley Alumina Refinery, located in the South West region of WA. The purpose of this report is to present the work completed on assigned projects during the internship.

In order to provide a substantial contribution to the project work, an understanding of the refinery’s process and operations, overall control system and the tools utilised by control engineers on site was required. A summary of this background information is detailed within this report.

This report summarises the work completed on all major projects assigned during the time spent at the Worsley refinery. The project work completed covers a wide range of Process Control applications from the design of operator graphics to configuring networks. A contribution has been made to six projects which are listed within the report. Four projects will be covered in greater detail, highlighting required background information, methodologies applied, project constraints and a description of the projects’ outcomes. The following projects to be discussed in greater detail are as follows;

- Experion Development Test System
- Reclaimer System Faults
- E&G Commissioning - Bauxite Shuttle Conveyors
- E&G Commissioning - Sulphate Removal Filters

This report will also cover the work on the remaining two projects and additional work completed outside of the assigned projects. Brief project summaries are provided for the migration of lab update values to Experion and the fault rest functionality for the alumina loud out sequence at the Bunbury port.

The internship allows the student to gain experience with industry projects that a Process Control engineer is involved with on a daily basis, creating an invaluable learning experience. This will help the student apply the knowledge gained from university and to develop skills needed for the workplace personally and professionally.
Disclaimer

All of the work discussed in this report is the work of the author unless otherwise referenced.

I declare the following to be my own work, unless otherwise referenced, as defined by Murdoch University’s policy on plagiarism.

..

Elliot Payne

November 2011
Acknowledgments

I would firstly like to thank BHP Billiton Worsley Alumina Pty Ltd for providing the opportunity to complete an internship with their Process Control engineering group. This internship has given me the chance to be involved with first hand, real world Process Control engineering projects.

My sincere gratitude is expressed towards the entire Process Control group at the Worsley Refinery. Their guidance and relentless assistance has contributed greatly to the success of this internship. Special thanks should be reserved for project supervisors Ben Marler, Julian Leitch, Stephen Gray, George Boaden and Ryan Peters who have guided progression through the assigned projects. I would also like to highlight my gratitude towards my industry supervisors; Process Control Superintendent Arnold Oliver; Senior Process Control Engineer Angelo D’Agostino; and Process Control Consultant Rob Duggan who have donated their valuable time to contribute to my development as a professional engineer.

Thanks should be reserved for all the staff at Murdoch University who have been involved with my learning during my degree. Special thanks is required for my academic supervisor Doctor Gareth Lee who has overseen the internship with ongoing support and direction. Associate Professor Graeme Cole and Professor Parisa Bahri should also be mentioned for their substantial contribution towards my learnings at university.
Table of Contents

Abstract ... I
Disclaimer ... II
Acknowledgments .. III
List of Figures .. VII
List of Tables ... VII

1 Introduction .. 1

2 Background .. 2
 2.1 The Worsley Bayer Process .. 2
 2.1.1 Raw Materials ... 2
 2.1.2 Area 1 – Digestion .. 3
 2.1.3 Area 2 – Clarification ... 4
 2.1.4 Area 3 – Precipitation ... 6
 2.1.5 Area 4 – Calcination ... 7
 2.1.6 Liquor Burner ... 8
 2.1.7 Powerhouse and Cogeneration Plant .. 9
 2.2 Worsley Control System Overview .. 10
 2.3 Engineering Tools/Applications utilised ... 11
 2.3.1 Honeywell HMI Web Builder .. 11
 2.3.2 Honeywell Configuration Studio: Quick builder ... 11
 2.3.3 Honeywell Configuration Studio: Control Builder .. 11
 2.3.4 Honeywell Experion Station .. 11
 2.3.5 Honeywell PlantScape Station ... 12
 2.3.6 Honeywell Doc4000 .. 12
 2.3.7 Honeywell PHD Uniformace .. 12
 2.3.8 ProWORX 32 .. 12
 2.3.9 Microsoft Office Applications ... 12

3 Project Work .. 13
 3.1 Experion Development Test System .. 13
 3.1.1 Background ... 13
 3.1.2 Scope .. 14
 3.1.3 Implementation/Method ... 14
 3.1.4 Technical Issues/Project Constraints .. 15
3.1.5 Project Status ... 15
3.1.6 Project Conclusion .. 16

3.2 Reclaimer System Faults... 16
3.2.1 Background ... 16
3.2.2 Engineering Tools utilised .. 17
3.2.3 Scope .. 17
3.2.4 Time Allocation and Management ... 18
3.2.5 Implementation/Method .. 18
3.2.6 Technical Issues/Constraints ... 20
3.2.7 Project Status ... 20
3.2.8 Project Conclusion .. 21

3.3 E&G Commissioning Shuttle Conveyors ... 22
3.3.1 Background ... 22
3.3.2 Scope .. 23
3.3.3 Implementation/Method .. 23
3.3.4 Project Status ... 25
3.3.5 Project Conclusion .. 25

3.4 E&G Commissioning Sulphate Removal Filters ... 25
3.4.1 Background ... 25
3.4.2 Scope .. 25
3.4.3 Filter Sequence .. 26
3.4.4 Implementation/Method .. 27
3.4.5 Technical Issues/Constraints ... 28
3.4.6 Project Status ... 28
3.4.7 Project Conclusion .. 28

4 Remaining Project Summaries .. 29
4.1 Migrate Lab Update System to Profit Sensor Pro ... 29
4.1.1 Project Summary .. 29
4.2 Fault Reset Button – Utico ... 29
4.2.1 Project Summary .. 29

5 Additional Tasks Completed ... 31
5.1 Morning and KPI Meetings .. 31
5.2 Engineering Open Day ... 31
5.3 Honeywell User Group Demo ... 31
List of Figures

Figure 1 - Bauxite Grinding Mill Circuit Flow Diagram ... 3
Figure 2 - Area 2 Flow Diagram .. 5
Figure 3 - Area 3 Precipitator Vessels .. 6
Figure 4 - Area 4 Calciners .. 7
Figure 5 - Rotary Kiln Viewed from the Northern (Feed) End .. 8
Figure 6 - Powerhouse and Cogeneration Plant .. 9
Figure 7 - Control System History ... 10
Figure 8 - Common Alarm Grouping Advantage .. 16
Figure 9 - Reclaimer Control System Architecture .. 19
Figure 10 - Bauxite Feed Bin Filling System ... 22
Figure 11 - Sulphate Plate Pack Filter System Standby mode .. 26
Figure 12 - Refinery Area and Flow Overview .. 41
Figure 13 - Development Network Switch Connections .. 42
Figure 14 - Develop Network System Layout ... 43
Figure 15 - Project Work Gantt Chart .. 44
Figure 16 - Reclaimer Alarm Diagnostic Graphic Page ... 47
Figure 17 - Filter Filling mode ... 48
Figure 18 - Filtration Mode ... 48
Figure 19 - Pressure Release mode ... 49
Figure 20 - Core Blow mode ... 49
Figure 21 - Stop Core Blow mode ... 50
Figure 22 - Filtrate Line Blow mode ... 50
Figure 23 - Plate Pack Opening mode ... 51
Figure 24 - Deluge mode .. 51
Figure 25 - Optional Internal Wash mode ... 52

List of Tables

Table 1 - Journal Week 7 .. 33
Table 2 - Reclaimer Alarm Address Table .. 45