Molecular markers, analysis and the population genetics of parasites

Clare Colleen Constantine
B.Sc (Hons.) UWA

Division of Veterinary and Biomedical Sciences
Murdoch University
Western Australia

This thesis is presented for the degree of Doctor of Philosophy of Murdoch University
2002
I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution.

Clare Colleen Constantine
Abstract

In this study different molecular techniques are contrasted (RAPD's, allozyme, sequencing mtDNA, sequencing ribosomal spacers) and appropriate analytical methods (allelic and infinite-sites approaches; inbreeding and coalescent models) used for estimating population genetic parameters in parasites. A range of population genetic questions at different scales were chosen to emphasise the importance of tailoring techniques and analytical methods to the particular question being investigated.

The realisation that each question formulated has a particular scale means the appropriate technique and markers must be useful at that scale to attempt to answer the question. The useful scale of a technique depends several factors including the region of DNA examined, the density of sampling of the technique, and the mode of evolution of the markers. Each technique will produce a useful range of variability. Below the lower limit there is no variation, above the upper limit the variation is too high to produce useful comparisons.

Parasites are of interest for many reasons, primarily because they can cause disease and thus impact on their host's population dynamics. They are often closely associated with their hosts and may undergo co-evolution, as well as causing an ongoing immunological "arms race" with their hosts. The parasitic mode of live is found throughout nearly all taxonomic groupings and thus classical models of population genetics based on sexual, diploid vertebrates do not fit well with the entire diversity of parasite groups.

Genetic diversity within and among populations of *Echinococcus granulosus* was examined contrasting a RAPD dataset with an allozyme dataset. Two models of variation in *Echinococcus* have been proposed, those of Smyth and Rausch, and the expected genetic structure from each was compared to the observed genetic structure. The premise of Smyth’s model, predominant self-fertilisation, was supported, but the resultant pattern of genetic variation followed Rausch’s model.

RAPD data, being dominant, present challenges to analysis. An approach to overcome this dominance problem and allow standard allelic frequency analysis is described using
the selfing rate estimated from allozyme data. The RAPD data were also analysed using both band-sharing and nucleotide diversity approaches.

A population genetic study of *Ostertagia ostertagi* in the USA was extended to two different scales: within an Australian state and between the USA and Australian continents. Three alternative explanations for the observed discrepancy between genetic structure and differentiation in an important biological trait, hypobiosis, were explored. A number of programs and analyses were compared including coalescent geneflow estimates.

Variation among multiple copies of two spacer regions of rDNA was examined within individuals of *Ostertagia ostertagi*. Both the intergenic spacer and internal transcribed spacer 1 regions were found to include repeat regions, with different numbers of repeats creating length differences in clones from the same worm. Multi-copy genes present extra challenges in analysis to ensure that only homologous copies are being compared. Many studies fail to look for variation within populations or within individuals.

The two major conclusions from these examples are that:

1). The study of variation necessarily involves an implicit scale, and markers must be chosen that are appropriate to the question being explored.

2). Using several methods of analysis of genetic data allows contrasts to be made, and if different methods produce similar results gives much more confidence in the conclusions drawn. Incongruence in results leads to new questions and reexamination of the assumptions of each analysis.
Publications

Book chapter:

Refereed journal articles:

Conferences:

Acknowledgments

Thank you to my supervisors, Professor R. C. Andy Thompson, who was always enthusiastic, and Dr. Alan J. Lymbery, who could always find a better way of writing something. Jennifer Walters helped in the fascinating task of picking worms out of abomasa, and provided accommodation. Margaret Hankinson meticulously produced the RAPD gels and scoring of bands for *Echinococcus granulosus*. Una Ryan, Richard Hopkins and Marion MacNish taught me a lot and were great fun to work with. To the members of the Parasitology group and the State Agricultural Biotechnology Center WA, thanks for creating a great atmosphere to research in. Special thanks to my family who supported me, even when it seemed I would never get finished.
Table of Contents

Abstract.. iii
Publications.. v
Acknowledgments ... vi
Table of Contents .. vii
List of Tables .. xi
List of Figures.. xi
List of abbreviations ... xv

1 INTRODUCTION... 1

1.1 THE IMPORTANCE OF SCALE .. 1
1.2 THE SCALE OF GENETIC STUDIES ... 2
1.3 GENETIC STUDIES OF PARASITES ... 3
 1.3.1 Parasites cause disease... 3
 1.3.2 Host/parasite relationship... 4
 1.3.3 Diversity of parasites .. 5
1.4 MOLECULAR MARKERS FOR GENETIC STUDIES ... 5
 1.4.1 Molecular markers versus other markers ... 5
 1.4.2 Markers and scale... 6
 1.4.3 Regions of DNA... 7
 1.4.3.1 Coding regions versus non-coding regions... 7
 1.4.3.2 Nuclear versus non-nuclear DNA... 7
 1.4.4 Molecular techniques that produce markers... 9
 1.4.4.1 Hybridisation & immunological ... 10
 1.4.4.2 Allozymes .. 10
 1.4.4.3 Protein sequence.. 11
 1.4.4.4 RFLP and Restriction sites ... 11
 1.4.4.5 RAPD .. 11
 1.4.4.6 Microsatellites (or SSRs) and minisatellites 12
 1.4.4.7 Sequencing .. 12
1.5 GENETIC ANALYSIS .. 13
 1.5.1 Population genetic models and processes .. 13
 1.5.1.1 Genetic drift .. 13
 1.5.1.2 Mutation and mating system .. 14
 1.5.1.3 Migration and gene flow ... 14
 1.5.1.4 Selection .. 15
 1.5.2 Models of marker variation... 15
 1.5.3 Statistics and methods of analysis ... 16
 1.5.3.1 Measures of diversity .. 16
 1.5.3.2 Distance measures .. 17
 1.5.3.3 Hierarchical analysis .. 17
 1.5.3.4 Gene flow .. 17
 1.5.3.5 Clustering and phylogenies ... 18
1.5.3.6 Coalescent analysis ... 18
1.5.4 Programs for genetic analysis .. 19
1.6 AIMS .. 21

2 General Materials and Methods ... 22
2.1 CAENORHABDITIS ELEGANS CULTURING 22
2.2 DNA EXTRACTION ... 22
2.2.1 Ostertagia ostertagi DNA extraction .. 22
2.2.1.1 CTAB extraction ... 22
2.2.1.2 Miniprep extraction ... 23
2.2.1.3 Phenol-chloroform extraction ... 23
2.2.1.4 SDS extraction ... 24
2.2.1.5 Blouin’s extraction .. 24
2.2.1.6 Prep-A-Gene modified extraction 25
2.2.2 Echinococcus granulosus DNA extraction 25
2.2.3 C. elegans DNA extraction .. 25
2.3 AGAROSE GEL ELECTROPHORESIS .. 26
2.4 PCR .. 26
2.4.1 Primer design .. 26
2.5 PROBING .. 28
2.5.1 Southern blotting, alkali method .. 28
2.5.2 Enhanced chemoluminescence (ECL) and Digoxigenin (DIG) labelling .. 28
2.5.3 Radioactive probing ... 28
2.6 CLONING ... 29
2.6.1 Preparation of competent cells .. 29
2.6.2 Transformation ... 29
2.6.3 Blunt end cloning .. 29
2.6.4 Tvector cloning ... 30
2.6.5 Insert screening by PCR .. 30
2.6.6 Small scale plasmid preps ... 31
2.7 SEQUENCING .. 31
2.7.1 Sequence analyses ... 32

3 Genetic diversity within and among populations: Echinococcus granulosus in Australia analysed using RAPD and allozyme data .. 33
3.1 INTRODUCTION ... 33
3.1.1 Hypotheses on genetic variation and controversy 34
3.1.2 Recognition that disagreement is due to scale 35
3.1.3 Problems with the allozyme dataset .. 35
3.1.4 Random Amplified Polymorphic DNA 36
3.1.5 Aims ... 38
3.2 MATERIALS AND METHODS .. 39
3.2.1 Datasets .. 39
3.2.2 RAPD-PCR and Electrophoresis .. 40
3.2.3 Primers .. 41
3.2.4 Analysis of Allozyme Data ... 41
3.2.5 Analysis of RAPD data .. 42
3.2.5.1 Band sharing – distance and AMOVA approaches 42
3.2.5.2 Nucleotide diversity .. 43
3.2.5.2.1 Allelic with correction for dominance given inbreeding/selfing estimate 43

3.3 RESULTS ..45

3.3.1 Genetic interpretation of banding patterns ...45

3.3.2 Genetic variation within populations ...45

3.3.2.1 Allozyme data ...45

3.3.2.2 RAPD data ..46

3.3.3 Genetic variation among populations ...48

3.3.3.1 Allozyme data: ..48

3.3.3.2 RAPD data: ...50

3.3.3.2.1 Allelic approach ...50

3.3.3.2.2 Nucleotide diversity and band-sharing approaches51

3.3.3.3 Contrasting RAPD and allozyme datasets for genetic variation among populations ..54

3.3.4 Partitioning genetic variation within and among populations55

3.4 DISCUSSION ...57

3.4.1 Importance of breeding system ...57

3.4.2 RAPD dataset compared to allozyme dataset ...58

3.4.3 Uses and limitations RAPD data ..59

4 Genetic diversity within and among populations: Ostertagia ostertagi in Australia and the USA analysed using mtDNA sequences ..61

4.1 INTRODUCTION ...61

4.1.1 Ostertagia ostertagi and Ostertagiasis ...61

4.1.2 Hypobiosis ...62

4.1.3 Genetic structure in Ostertagia ostertagi ...62

4.1.4 Aims ...64

4.2 MATERIALS & METHODS ...65

4.2.1 Sampling Design ...65

4.2.2 Choice of Genetic Marker ...67

4.2.3 Analysis ...70

4.2.3.1 Nucleotide and amino acid diversity ...70

4.2.3.2 Within population diversity ...70

4.2.3.3 Partitioning diversity within and among populations70

4.2.3.4 Gene flow among populations and isolation by distance70

4.2.3.5 Coalescent analysis ...71

4.3 RESULTS ..73

4.3.1 Nucleotide sequence and amino acid diversity73

4.3.2 Diversity within populations ...74

4.3.3 Partitioning diversity within and among populations75

4.3.4 Gene flow among populations and isolation by distance76

4.3.5 Coalescent analysis of gene flow ..78

4.4 DISCUSSION ...82

4.4.1 High mutation rate of mtDNA (High μ) ..82

4.4.2 High migration rate (High m) ...83

4.4.3 High effective population size (High N_e) ..84

4.4.4 Recent radiation/colonisation ..84

4.4.5 Conclusions ...86
5 Genetic diversity within and among individuals: Ribosomal spacer regions, ITS1 and IGS, of *Ostertagia ostertagi* both show a repeat region with intra-individual variation in repeat number .. 87

5.1 INTRODUCTION ..87

5.1.1 Ribosomal DNA .. 87
5.1.2 Ribosomal spacers .. 88
5.1.3 Aim .. 89

5.2 MATERIALS & METHODS ... 90

5.2.1 DNA extraction ... 90
5.2.2 PCR Amplification .. 90
5.2.3 Cloning of multi-sized PCR product ... 90
5.2.4 Analysis ... 91

5.3 RESULTS ... 92

5.3.1 IGS .. 92
5.3.1.1 IGS sequence variation ... 92
5.3.1.2 IGS phylogenies .. 93

5.3.2 ITS ... 95
5.3.2.1 ITS sequence variation ... 95
5.3.2.2 ITS Phylogenies .. 96
5.3.2.3 Comparison with ITS1 from other species ... 99
5.3.2.4 ITS2 variation and comparison with other species 100

5.4 DISCUSSION ..102

5.4.1 IGS ... 102
5.4.2 ITS.. 102
5.4.3 PCR-induced deletions may be responsible for length variation103
5.4.4 Implications for rDNA as a diagnostic tool ... 103
5.4.4.1 Compensatory mutations in spacer regions to maintain secondary
structure 104
5.4.5 Implications for concerted evolution .. 104
5.4.6 Use of multi-copy regions ... 105
5.4.7 Conclusion .. 106

6 General Discussion .. 107

Appendix 1 - Allozyme data set for *Echinococcus granulosus* in Australia 113
Appendix 2 - RAPD data for *Echinococcus granulosus* in Australia 116
Appendix 3 - 318 bp of ND4 locus for 88 Australian and 28 USA *O. ostertagi* 117
Appendix 4 - Amino acid sequence of partial ND4 for 116 *O. ostertagi* 122
Appendix 5 - rDNA IGS regions from 3 *O. ostertagi* worms for 9 clones 124
Appendix 6 - rDNA ITS regions for 8 clones from a single *O. ostertagi* worm ... 126

References ... 129
List of Tables

Table 1.1 - Regions of DNA, their function, variability and limitations 8
Table 1.2 - Characteristics of selected molecular techniques in terms of ease/cost, sampling, variability, prior information required and sensitivity .. 9
Table 1.3 - Scale of uses of selected molecular techniques ... 10
Table 1.4 - Selected computer programs for population genetic data analysis 21
Table 2.1 - List of primers designed for regions of O. ostertagi 27
Table 2.2 - Published primers used in this study .. 27
Table 3.1 - Sample sizes for Echinococcus granulosus from 6 Australian populations for allozyme and RAPD datasets ... 40
Table 3.2 - Genetic diversity within populations of Echinococcus granulosus in Australia, estimates from allozyme data ... 46
Table 3.3 - Genetic diversity within populations of E. granulosus in Australia, measures from RAPD data for each population of Echinococcus granulosus under three different selfing rate assumptions ... 47
Table 3.4 - Nei's genetic distances between populations of E. granulosus in Australia estimated from RAPD data under 3 selfing rate assumptions 50
Table 3.5 - Allozyme loci diversity and gene flow estimates of E. granulosus in Australia .. 55
Table 3.6 - RAPD diversity and gene flow estimates .. 55
Table 3.7 - Hierarchical analysis of genetic variation in Echinococcus granulosus in Australia.. 56
Table 4.1 - Sample sizes of Ostertagia ostertagi from Australia and USA for mtDNA sequencing .. 69
Table 4.2 - Within population diversity for five populations of O. ostertagi each from Australia and the USA .. 74
Table 4.3 - Analysis of molecular variance for five Australia populations of Ostertagia ostertagi .. 75
Table 4.4 - Analysis of molecular variance for five USA populations of Ostertagia ostertagi .. 75
Table 4.5 - Hierarchical analysis of molecular variance for 5 USA and 5 Australian populations of Ostertagia ostertagi ... 76
Table 4.6 - Analysis of molecular variance for 2 winter arresting populations and 3 summer arresting populations in the USA of *Ostertagia ostertagi*......................76

Table 4.7 - Pairwise gene flow (Nm) estimates (calculated by Nei's 1982 method) between five Australian populations of *Ostertagia ostertagi*.........................77

Table 4.8 - Pairwise gene flow (Nm) estimates (calculated by Nei's 1982 method) between five USA populations of *Ostertagia ostertagi*.................................77

Table 4.9 - Intercontinental estimates of gene flow (Nm) for *O. ostertagi* between Australia and USA...77

Table 4.10 - Slatkin’s linearized FSTs above diagonal; Nm values below for populations of *Ostertagia ostertagi* from Australia and the USA.........................77

Table 4.11 - Gene flow estimated from phylogenies of *Ostertagia ostertagi* from different populations using the modified Slatkin & Maddison 1989 method........81

Table 5.1 - Numbers of 104bp repeats in cloned IGS fragments from three *Ostertagia ostertagi* worms, number of clones sequenced in brackets.........................92

List of Figures

Figure 3.1 - Four regions of Australia from which *Echinococcus granulosus* samples were collected...39

Figure 3.2 - Relationship between observed band frequency and allelic frequency for different selfing rates ranging from Hardy-Weinberg equilibrium to strict self-fertilisation...44

Figure 3.3 - Expected heterozygosity estimated from allozyme versus RAPD dataset for each population of *E. granulosus* in Australia.............................47

Figure 3.4 - Number of samples versus expected heterozygosity for populations of *E. granulosus* in Australia for both allozyme and RAPD data types...........48

Figure 3.5 - Nei's genetic distances between populations of *E. granulosus* in Australia from allozyme data estimated by five computer programs.................49

Figure 3.6 - Errors in calculating Nei's genetic distance between populations of *E. granulosus* in Australia due to missing loci by two programs...............49

Figure 3.7 - Phenogram of populations of *E. granulosus* in Australia using neighbour joining of Nei’s genetic distances from allozyme data.........................50

Figure 3.8 - Neighbour Joining phenogram of Nei's Genetic Distance for populations of *E. granulosus* in Australia, estimated from RAPD data assuming a) selfing=0 and b) selfing = 0.989...51
Figure 3.9 - Nucleotide diversity estimated between pairs of populations of *E. granulosus* in Australia from 10mer and 12mer primers and the average...........52

Figure 3.10 - Correlation of three RAPD analysis approaches for estimating pairwise distances between populations of *E. granulosus* in Australia..........................53

Figure 3.11 - Nei's genetic distances from allozyme data versus Nei's genetic distances from RAPD data for populations of *E. granulosus* in Australia..........................54

Figure 4.1 – Locations from tail tag traces of cattle sampled for *Ostertagia ostertagi* in Western Australia..65

Figure 4.2 – Number of *O. ostertagi* collected from sampled cattle..........................66

Figure 4.3 – Number of *Haemonchus placei* collected from sampled cattle.................66

Figure 4.4 - Subclones of *O. ostertagi* mtDNA used to locate the non-coding region by comparison with *C. elegans* gene order, boxes represent subclones, solid regions were sequenced...68

Figure 4.5 - Gene flow from minimum number of migration events, n=8, 16, 32 given in Slatkin and Maddison (1989), n= 5, 12 and 28 interpolations.........................72

Figure 4.6 – Number of variant sequences at each codon position of partial ND4 sequence for *Ostertagia ostertagi*...73

Figure 4.7 –Geographic distance versus pairwise population Fst’s for populations of *O. ostertagi* in Australia and USA.................................78

Figure 4.8 – Maximum likelihood and neighbour joining tree of 318 bp of ND4 sequence from 28 USA and 60 Australian *Ostertagia ostertagi*.........................80

Figure 4.9 – Location traced onto maximum likelihood neighbour joining tree for 28 samples each from Australia and USA of *O. ostertagi*.................................81

Figure 5.1 - A rDNA unit of *Ostertagia ostertagi* showing coding regions (shaded) and spacer regions, arrows represent primers used, open arrows for ITS region and closed for IGS region...88

Figure 5.2 - Diagram of IGS repeat units in different clones of *O. ostertagi*..........93

Figure 5.3 - Phylogeny of IGS repeats from 3 different worms (1-3), clone letter (B,C,D,F,I,K,O,P), and repeat position (1-4).................................94

Figure 5.4 - Phylogeny of IGS repeats of *O. ostertagi* with repeat position traced, first number is the worm, the letter is the clone, final number is position of repeat, which is also shown by shading.................................94
Figure 5.5 - Phylogeny of non-repeat IGS regions of *O. ostertagi* cloned from three worms (number of repeats shown in brackets), using Kimura's distance and neighbour joining... 95

Figure 5.6 - Diagram of ITS1 repeat units in different clones of a single *O. ostertagi*.. 96

Figure 5.7 - Phylogeny using Kimura distance and neighbour joining of ITS repeats from clones of a single *O. ostertagi* worm, first letter indicates clone, number is the repeat position, and final letter is the repeat type.. 97

Figure 5.8 - Phylogeny of ITS repeats only first 91 basepairs, from clones of a single *O. ostertagi* worm, first letter indicates clone, number is the repeat position, and final letter is the repeat type.. 98

Figure 5.9 - Phylogeny of ITS repeats only first 91 basepairs with position traced, from clones of a single *O. ostertagi* worm, lower letter indicates clone, number is the repeat position, and top letter is the repeat type... 98

Figure 5.10 - Phylogeny of ITS non-repeat regions (sequence before and after repeat region) of clones from a single *O. ostertagi*. Letter is clone and number is the number of repeats found in that clone.. 99

Figure 5.11 - ITS1 region for various trichostrongyle nematodes (first is a consensus from this study; others are from Zarlenga *et al* 1998 AF044927-34).................................. 100

Figure 5.12 - ITS2 of *Ostertagia ostertagi* from this study and previously reported for *O. ostertagi*, *O. leptospicularis*, *Teladorsagia circumcincta*, *O. arctica*, *O. gruehneri*, *Marshallagia*; and *O. trifurcata*... 101

Figure 6.1a - Neighbour Joining clustering of Jaccards distances from RAPD data for 43 individual *E. granulosus* from 6 populations across Australia......................... 110

Figure 6.1b - Neighbour Joining clustering of maximum likelihood distance from partial ND4 mtDNA sequence for 28 *Ostertagia ostertagi* individuals from 5 USA states... 111
List of abbreviations

Fst, Fis, Fit See Table 3.5 and sections 1.5.3.3, 3.2.4.
Fst is a measure of genetic differentiation over subpopulations. The correlation between the probability that two randomly chosen gene copies picked from a subpopulation share an ancestor in the last generation relative to picked from the total population. Uses the partitioning of total genetic variation into variability within and between populations. $F_{st} = (F_{it}-F_{is})/(1-F_{is})$ where t is total, i is individual and s is subdivision.

Gst See Table 3.6 and section 1.5.3.3.
A measure of genetic variation between populations relative to that within populations, a generalised version of Fst. Originally devised by Nei, with the following formula by Slatkin:

$$G_{st} = 1/(4N_m[k/(k-1)]^2 + 1)$$

Ho, Hs, Ht See Tables 3.2 and 3.5.
$H_o =$ Average observed heterozygosity within groups. $H_t =$ Total heterozygosity in the entire data set. $H_s =$ Gene diversity within groups averaged over the entire data set. See Fst for general concept of subpopulation genetic differentiation.

ITS See Chapter 5 especially Figure 5.1.
Internal Transcribed Spacers are non-coding regions that are transcribed and later excised from the final gene products. There are two ribosomal ITS regions, one between 18S and 5.8S genes, and one between the 5.8S gene and 28S gene. These regions are more variable than the surrounding coding regions.

IGS See Chapter 5 especially Figure 5.1.
Inter genic spacers are non-coding regions between genes that are not transcribed (although they often include functional motifs such as transcription initiation). Ribosomal IGS is often a large (>1kb) region which is highly variable.

Nm or NeM See Table 3.5 and section 1.5.3.4
A measure of gene flow. The product of effective population size (N_e) and effective migration rate (m). Often estimated using $N_em = 0.25(1-F_{st})/F_{st}$ (Nei, 1987)

Nst See section 1.5.3.3.
A specific estimator equivalent to Fst (Lynch & Crease 1990).

RAPD See section 1.4.4.5 and Chapter 3 especially 3.1.4.
Random Amplified Polymorphic DNA is a molecular technique which uses short (10-16bp) single primers which bind wherever complementary sequence is found and when by chance two bind facing each other, close enough for PCR to amplify a fragment is produced which appears as a band when run on a gel. This technique can be applied to any DNA without any knowledge of its sequence. It is highly sensitive to changes in PCR conditions.

UPGMA See section 1.5.3.5.
Unweighted pair group method with arithmetic average to estimate genetic distance between groups. Produces a matrix of distance estimates that is then used by a clustering algorithm to produce a tree.