
http://researchrepository.murdoch.edu.au/6082/
The hybrid ontology of mobile gaming
Ingrid Richardson, Murdoch University

Abstract
This paper examines the hybrid ontologies that typify networked and mobile location-based games, exploring some of the phenomenological, embodied or somatic aspects of the practices and perceptions of ‘mixed reality’ game-play. In particular, it focuses on the potential cultural and corporeal effects of mobile gaming since the introduction of the iPhone and subsequent touchscreens, and the specific technosomatic arrangements such devices demand in everyday life. Mobile media and game-play in both urban and domestic places evoke particular kinds of embodiment, indicative of emergent habitual and quotidian behaviours, gesturings, positionings and choreographies of the body, at times partially determined by the culture of the user, at others by the technical specificities and demands of the interface. Location-based mobile games and applications also modify our experience and perception of ‘being online’, and effectively disassemble the actual/virtual dichotomy of internet ‘being’ into a complex and dynamic range of modalities of presence. Finally, this paper suggests that the kind of ontological and ‘containment’ metaphors we use to describe the space of screen-based game-play – in particular, the magic circle, and tropologies of the screen as a fixed window or frame – are ill-suited as descriptors for the complex layering of material and virtual contexts specific to mobile location-based and mixed reality gaming.

Key Words/mobile phone / mobile media / games / mobile games / location-based games / phenomenology / touchscreens / iPhone

Introduction
Mobile and handheld gaming presents a complex interplay of cultural, contextual and corporeal factors. The mobile phone and handheld game device are simultaneously — and often equally — acoustic, visual and haptic mediums. The mobile screen is now populated by data menus and files, scrolling text, web pages, word and image software, still photographs and video, animations, casual and hardcore online and offline games, virtual objects overlaying actual environments, and other transformations brought about by third (3G) and fourth generation (4G) technologies and networks. Such portable media devices are becoming increasingly sophisticated, and are now being examined in their own right as new media forms. Over the past few years, an array of smart web-capable touchscreen phones such as the HTC Diamond, Samsung Galaxy and the iPhone have transformed mobile game-play.

In this paper I examine the cultural and phenomenological, or socio-somatic, aspects of mobile gaming, seeking to provide some critical insights into the way mobile devices and smartphones impact upon our experience of embodiment and play in context specific ways. In particular, I focus on the potential cultural and corporeal effects of mobile gaming since the introduction of the iPhone – specifically in terms of emergent micro/macro-perceptions and micro/macro-mobilities – and some of the implications of location-based applications and games for our embodied and spatial engagement. Smartphones such as the iPhone offer advanced capabilities such as internet access, media software, a keyboard and open operating system. They mark a significant shift away from the ‘phonic’ functionalities of the mobile phone, resulting in a correlative modification to the human-technology and embodiment relations specific to mobile and game interfaces. Finally, I suggest that such relations can be usefully
interpreted via a critical analysis of the various ontological metaphors we employ to describe the space of screen-based game-play.

Mobile phenomenology

In our ethnographic analysis of young people’s use and perception of the mobile phone, Amanda Third and I proposed that the proliferation of functionalities in mobile handsets is paralleled by highly idiosyncratic usage patterns (Richardson and Third, 2009), findings that are also echoed in Stald’s recent investigation of mobile phones and identity among Danish young people (Stald, 2008). That is, tracking our sample of young users highlighted the way that mobile media practices are far from predictable and uniform; rather, the young people in our study incorporated mobile handsets into their everyday lives in ways that were intensely individualized. Fortunati suggests that the mobile phone is both multiform and multifunctional, an ‘open work’ requiring a complex range of hermeneutic skills on the part of the user, and also highly mutable because ‘it is held very close to the body or stays on the body surface’ (Fortunati, 2005: 152-153, 156). As Chan notes, the ‘micronarratives’ associated with new interfaces ‘need to be incorporated into macroperspectives on convergence culture if only to invest the latter with additional levels of nuance and complexity’ (Chan, 2008: 13).

In this context, and turning towards a more phenomenological interpretation, to Chan’s focus on the ‘micro’ and the need to ‘cultivate contextual knowledge’ (Chan, 2008: 17-18) surrounding mobile games and mobile media use within the broader global context, I would add both micro/macro-perceptions and micro/macro-mobilities to the analysis of mobile gaming. The first couplet refers to the sensory minutiae — haptic, auditory, visual and spatial — that we individually and collectively experience through our use of mobile devices, and to the ways in which mobile gaming impacts upon our broader spatial and environmental perceptions. The second couplet, borrowed from O’Hara et al’s analysis of videophoning, refers respectively to the small and ‘handy’ motor movements such as those required to orient the mobile screen or use the number pad, and to the ‘larger’ full-bodied or pedestrian actions such as walking while talking, texting or gaming (O’Hara et al, 2006). In addition, as I will suggest in the context of the iPhone, the specificities of mobile platforms and interfaces must also be accounted for, including the way in which the technical aspects of mobile devices traverse and effect our everyday experiences and modes of embodiment. That is, in an environment of multiplying handsets and frequently upgraded portable game consoles it is salient to examine the perceptual specificity of our interactions with and experiences of such devices, and the ways in which particular games (casual, location-based, hybrid, online, discrete, etc) reflect different relationships between users, handsets, content, the physical and socio-cultural environment, and spatial and corporeal circumstances.

As I have argued elsewhere (Richardson, 2005) considering mobile phones and media in terms of their own specific corporeal and cultural effects assumes the much-used media theory concept of medium specificity. Although some might question whether medium specificity is still a central concept at a time of digital convergence, multi- and cross-platform media, I suggest that each interface (and even experiencing different kinds of services and content within the one apparatus) can be interpreted in terms of specific and differential effects. Mobile media interfaces — or more precisely, for the purposes of this paper, the increasing array of third generation handsets and smartphones that enable online and offline gaming — can be critically understood as complex and divergent instantiations of new media forms, each demanding a particular mode of embodied interaction. That is, when previously discrete media functionalities come together and are mobilized — in newer model mobile phones, for example, this may include the telephone, digital camera, television, internet, and casual gaming—what emerges is not a single all-purpose device but a seemingly endless iteration of handsets with varying capabilities and design features, each prioritizing a specific
technosomatic arrangement. This refers literally to the irreducible relation between human bodies and technologies — what Hansen (Hansen, 2006: ix) refers to as the ‘originary technicity’ of the human, and Don Ihde terms the human-technology relation — our fundamental ontological condition.¹ For example, in its deployment of a multi-touch interface, accelerometer, GPS, real-time 3D graphics, and 3D positional audio, the iPhone demands a unique corporealization of game-play. Moreover, in enabling game and application developers to create and upload their own creations into the App Store², there is potential for significant innovation and variation in terms of the technosomatic skills required by the gamer.

Yet this diversification of interface and use(r) does not mean the term convergence holds no validity; rather we can work towards a more nuanced or flexible understanding of the relation between convergence and medium specificity. For Jenkins convergence is a term that broadly describes technological, industrial, cultural and social changes, and the complex interaction between old and new media (Jenkins, 2006). That is, it conveys how consumers ‘make connections among dispersed media content’ (Jenkins, 2006: 3) such that one technology or interface is used to provide many services, or many interfaces provide access to the same content/service.³ Thus convergence is a dynamic process that is fundamentally unstable, wherein divergent modes of engaging with the same or similar content (such as playing a Crash Bandicoot game on your laptop or desktop computer, iPhone or other touchscreen phone, Nintendo DS or game console in single or multiplayer mode) intersect in complex ways with a range of services or applications (both official and unofficial). Indeed, the remediation of older forms of media into newer and mobile devices is a process of dynamic interplay between medium specificity and convergence, complexly embedded in the usability and intuitiveness of the interface. My particular interest here is how this interplay and usability is manifested in terms of the cultural context and embodiment of users, an interpretation carried out primarily via a phenomenological and post-phenomenological approach.

Merleau-Ponty famously claimed that the body ‘applies itself to space like a hand to an instrument’ (1964: 5), an ‘application’ that depends as much on the specificities of perception and bodily movement as it does on the materiality of the tool-in-use. In his well-known description of the blind man and his stick, Merleau-Ponty describes how the corporeal schema of the body dilates and retracts to accommodate tools:

The blind man’s stick has ceased to be an object for him and is no longer perceived for itself; its point has become an area of sensitivity, extending the scope and active radius of touch and providing a parallel to sight. In the exploration of things, the length of the stick does not enter expressively as a middle term: the blind man is aware of it through the position of objects rather than of the position of objects through it. The position of things is immediately given through the extent of the reach that carries him to it, which comprises, besides the arm’s reach, the stick’s range of action (1964: 22).

This passage describes the actuality of what Merleau-Ponty refers to as our corporeal or body schema, which is not determined by the boundaries of the material body but rather reflects the way that our corporeality extends and withdraws — changing its very reach and shape — in its dynamic apprehension of tools and things in the world. Merleau-Ponty argued that this schematic is inherently open, allowing us to incorporate technologies and equipment into our own perceptual and corporeal organisation. Indeed it could be argued that the corporeal schema is just another name for Hansen’s ‘originary technicity’. Or, as Heidegger (1977) claimed, our being is always-already situated within domains of equipment — so there is a direct and implicatory relation between the tools/technologies we use and the way we “have” a body.
There is thus a kind of anticipatory mobilization of the body in relation to any specific situation and environment, an ‘entering into a relationship’ with the world (Merleau-Ponty, 1962). The variable and relational ontology that is embodiment emerges through a network of extended relations between the body-subject and the equipmental environment. Subsequent theorists such as Ihde (1993) and Morris (2004) have complexified this body-tool relation by including the nuances of personal practices and cultural specificity. Ihde’s post-phenomenological approach focuses on the body-technology relations that emerge from particular cultural milieux and collective habits, and the way in which various technologies ‘transfer’ asymmetrically across cultures. Similarly, Morris argues that the dynamics of perception ‘are not anchored in a fixed, objective framework, they are intrinsic to the situation of perception, and can differ across individuals, habits, and social setting’ (2004: 23). This kind of analysis, which embeds cultural, historical, and gender specificity into our relational ontologies, has also been the particular focus of corporeal feminists such as Weiss (1999) and cultural phenomenologists such as Csordas (1999) and others. In these terms we can see how the cultural and technological specificity of media interfaces and apparatuses can be understood as deeply integral to our individual and collectively realized corporeal schemata. Indeed, considering the number of hours that many people spend engaging with media in contemporary life, the body-screen relation in particular may be one of our most significant human-technology relations.

Phenomenology is an apt method of analysis as it counters the notion that disembodiment is a condition of using the internet or the phone, is able to consider the ways that teletechnologies modify the body, and the kind of embodiment afforded by telepresent and mobile media. As de Souza e Silva notes, early discussions about cyberspace and the internet distinguished between the virtual and ‘real’ world, resulting in a ‘conceptualization of the Internet and digital information as essentially disconnected from physical spaces’ (2011). Mobile devices clearly antagonize any notion of a disembodied telepresence that is seemingly endemic to digital screen media, as we are frequently on-the-move, on-the-street and purposefully situated in local spaces and places when engaged in mobile phone use and mobile game-play. Moreover, as I will suggest in line with de Souza e Silva’s position, location aware mobile media and the increasing use of navigational and/or place-specific applications effectively interweave the physical and the digital, dissembling the dualism as both come together in ‘the immanence of the real’ (2011, 34). While recognizing the ‘distancings’ or alterations to somatic involvement that may inhere in such practices, mobile phone “being” is nevertheless very much embodied, motile, mobile, and in-the-world.

Micro-mobilities and micro-perceptions

Within the phenomenological framework, we can see how mobile game-play in both urban and domestic places evokes particular kinds of embodiment, indicative of emergent habitual and quotidian behaviours, gesturings, positionings and choreographies of the body, at times partially determined by the culture of the user, at others by the technical specificities and demands of the interface. For example, Chan cites a public survey taken in 2006 which found that for most Japanese casual mobile games are played in their bedroom or in the home, suggesting that mobile games are often engaged with in non-mobile, sometimes private and “sedentary domestic contexts” (Chan, 2008: 23). In other work Larissa Hjorth and I observed that of the twenty one female students surveyed in July 2008 at RMIT and Murdoch University in Australia, the eleven that played casual mobile games most often did so while waiting for friends in public places or while traveling on public transport, revealing how the mobile game becomes co-opted by the ‘body-in-waiting’, in situations of solitary co-presence (Hjorth and Richardson, 2009). Mobile phone use and mobile gaming is often characterized as a mode of engagement that requires only sporadic attention up to a threshold of around five minutes, hence the popular notion that casual games are the mobile phone’s predominant game genre,
and the labelling of ‘casual gamers’, who play at most for five minutes at a time and at irregular intervals, as a key market in the mobile game industry. Casual gamers are deemed to deliberately avoid the corporeal attachment of dedicated console or PC game-play so that they are perpetually ready to resume their temporarily interrupted activities.

Yet in phenomenological terms, mobile gaming on touchscreen and motion-sensing devices can at times demand a non-casual multi-sensory engagement, perhaps more akin to the stickiness of console gaming in Cheshire’s (2004) terms, or at least comparable to DS and PSP game-play. That is, traditional console and computer games (adventure, racing, first-person shooter etc) played on the iPhone (for example, Mario Racing or NitroCart), demand a corporeal attachment that necessitates an adroit oscillation between game-space and attentiveness to one’s spatial surroundings. In this way, the iPhone screen could be said to challenge the perception of mobile games as predominantly casual or nagara games (i.e. played while doing something else), recuperating some of the adhesive and immersive qualities proper to console games played on a television or computer screen. Or, at least, we might identify a broad spectrum of attachment across a range of game-play — from casual games to console-based games — based upon levels of immersion, engagement and distraction.

In terms of the micro-mobilities afforded by interface specificity, in their exploration of gesture recognition for mobile phones Niezen and Hancke comment that hand gestures are one of the most expressive and powerful communication modalities. Considering the importance of gesture recognition allows us to move beyond the ‘limited input capabilities of current mobile devices’ (2008) by emotionally mapping user functions to the user’s body. They note, however, that development must remain flexible to social acceptability and the balance between game immersion and environmental or physical awareness. Many iPhone games that deploy the accelerometer function often demand a ‘noticeable’ or ‘obvious’ orientation and movement of the hands, arms and upper body which may deter particular kinds of game-play in public places. The conspicuous bodily movements associated with some iPhone games means that solitary or domestically-situated play may be preferred until the game-player adapts to more economical motor movements and constrained micro-mobilities. Such adaptation is evident in the way Nintendo Wii game-players “learn” to replace generous movement of the body — standing up and swinging the arm in a bowling game, for example — with more somatically efficient flicks of the wrist while sitting down.

McCullough (1996) argued in Abstracting Craft: The Practiced Digital Hand that our deepest engagement is through touch. Such a view is prevalent in both game design and the game industry more broadly, and echoed in Nintendo’s labeling of the Touch Generation (Nintendo, 2010), which includes anyone aged between 8 and 80 under the assumption that we are all frequent users of touchscreen interfaces, whether via Automatic Teller Machines (ATMs) or the vastly more composite mobile phone touchscreen. The iPhone is specifically created for use with the finger or fingers for multi-touch sensing, and because the screen is a ‘capacitive’ touchscreen, it depends upon electrical conductivity that can only be provided by bare skin. Moreover, the iPhone screen can track the movement of five fingers simultaneously; in a keynote speech on game development for the iPhone, Freeverse game designer Justin Ficarotta stated: ‘Several touches can be combined into gestures... Drags, swipes, flicks, pinches, with a variable number of fingers... It’s very different from what we’re used to with mainstream games’ (Duffy, 2008).

Indeed, a notable aspect of the embodiment of mobile phones and screens in general is the manner in which what is seen on the screen is tangibly and contingently dependent on the hand’s movement and dexterity. In her work on the biomechanical relationship between the hand and mobile screen device (MSD), Cooley describes the tactile vision demanded by mobile
screens as a ‘material and dynamic seeing involving eyes as well as hands and MSD’ (2004: 137). Thus there is a certain intimacy with the mobile phone that renders it an object of tactile and kinaesthetic familiarity, a sensory knowing-ness of the fingers that correlates with what appears on the small screen. This is nowhere better exemplified than in iPhone games that depend on reality-based interaction which enfold the player into a temporary and incomplete simulation of real-world physics. The reality-based features of the iPhone (the Multi-Touch interface, the accelerometer, GPS, real-time 3D graphics, and 3D positional audio) are deployed in a number of racing games where the iPhone device simulates a steering wheel, and in games such as MonkeyBall, which requires the player to tilt the screen on a horizontal plane to control the movement of the ball through various obstacles and gradients.

Yet in the process of appropriating touchscreens such as the iPhone as a ‘fresh instrument’ (pace Merleau-Ponty), sometimes the ‘fit’ between mobile touchscreens and our corporeal schemata is noticeably imperfect, resulting in often idiosyncratic and spur-of-the-moment adaptation to the touchscreen in an attempt to overcome the initial sensory dis-incorporation of the device. The iPhone accelerometer lacks the acuity of the analog stick used with console game hand controllers, resulting in ‘lots of random data’ and imprecise control of both objects within the game and the game-space itself (Chen, 2008). In the case of the iPhone, then, ‘fit’ must accommodate a range of new micro-mobilities that have to be either learnt or remembered. When playing games on mobile touchscreens such as the DS and iPhone, for example, we can bring to the experience our haptic familiarity with other modes of non-mobile gaming, and as suggested in the case of the iPhone, recuperate some of the immersive and sticky qualities of both portable and domestic console games.

Macro-mobilities and macro-perceptions

I will turn now to the macro-mobile, macro-perceptual or ‘full-bodied’ pedestrian effects of mobile gaming, with a particular focus on location-based practices, suggesting that such locative games and applications present various interfacial modalities of mobile gaming or ‘play’. As de Souza e Silva notes, both the GPS-enabled iPhone and Google’s Android operating system ‘contributed to the popularization and commercialization of location-aware applications’ (2010, 486) and location-based services, which typically provide situational information about the urban environment via online databases and media libraries, such that informational changes on the mobile screen effect the navigation and experience of physical space. Interestingly, West and Mace point out in their analysis of the iPhone’s market success, that the increase in mobile internet use was a result of an important shift in thinking: from the provision of an internet tailored to mobile screens (e.g. evidenced by micro-browsers and provider portals) to the provision of the ‘real internet’ on the mobile device, initiated with the iPhone. They state:

> Three weeks before the release of the first iPhone, Steve Jobs predicted, ‘people want the real Internet on their phone’ … Jobs was eventually proven correct: when given web browsing that was substantially similar to the browsing experience on a PC, mobile web usage went up dramatically. The success of the iPhone demonstrated that what was holding back demand for mobile data services in the US was not the creation of new mobile-specific value networks, but the delivery of devices and networks that were capable of delivering a convincing approximation of the familiar wired Internet (West and Mace, 2010: 282).

Although this suggests the dominance and persistence of desktop-based internet imaginaries, a number of theorists have argued that the proliferation of mobile online activities — via mobile phones, laptops, PDAs and more recently netbooks and iPads — are changing the way we think about being ‘on’, ‘at’ or ‘in’ a simulated or computer space, and the way we think
about being ‘on’ or ‘off’ line (Lantz, 2006). As de Souza e Silva claims: ‘Because many mobile devices are constantly connected to the Internet... users do not perceive physical and digital spaces as separate entities and do not have the feeling of “entering” the Internet, or being immersed in digital spaces, as was generally the case when one needed to sit down in front of a computer screen and dial a connection’ (2006: 263). Being online and networked thus becomes another function of the mobile phone, but it is importantly a different experience of the internet and online connectivity: the supposedly dematerializing effects of cyberspace and telepresent interaction become enfolded inside present contexts and activities, like the embodied and itinerant acts of walking, driving, face-to-face communication and numerous other material and somatic involvements.

Indeed, de Souza e Silva suggests that the increase in web-based mobile practices within urban space means that we need to rethink the spatial and place-based experience of being-in-public. That is, the use of location-based applications generate hybrid spaces by integrating online information of one’s immediate environment into the patterns of urban life and peripatetic movement. In recent work de Souza e Silva and Gordon have argued that such hybrid practices generate what she terms net-local public space, which describes our movement ‘between the immediately proximate and the mediately distant within a carefully crafted set of social rituals that ultimately serves to extend the purview of local space’ (de Souza e Silva and Gordon, 2010). Net-local public space includes those engaging in location-based activities with mobile devices, those (both co-present and online) inhering or participating in this network activity, and those non-participants who are co-located in the urban setting. As our ‘attentional foci’ (2010) in such quotidian spaces becomes diversified and hybridised, effecting new micro- and macro-movements, the actual/virtual dichotomy previously used to differentiate between offline/online practices is thoroughly disassembled into a complex and dynamic range of modalities of presence.

A number of theorists have shown location-based mobile gaming as a particularly robust example of this emergent hybrid ontology (de Souza e Silva, Farman, Follet, Copier). In his analysis of Geocaching® Farman (2009) describes the mixed or augmented realities of pervasive location-based games where bodies, networks and material space converge. In such games, our embodied proprioception – that is, the awareness of our body’s position in relation to the environment enabled by our perception of movement and spatial orientation – must seamlessly accommodate both immediate and mediate being-in-the-world. Players of location-based games and users of location-based services, he comments, navigate the landscape in a ‘simultaneous process of sensorial movement through streets and buildings and an embodied connection to how those places are augmented by digital information on mobile devices’ (2009). This merger increasingly constitutes the ‘interface of everyday life’ (2009). In the game Mogi, for example (beta-tested successfully in Japan between 2003 and 2006), the city of Tokyo was represented both as a map on players’ mobile phones and on the web, the latter of which provided online players with an expanded view of the gameplay overlaying Tokyo along with the geographic and gameworld location of all players (de Souza e Silva and Hjorth, 2009: 621). Mogi worked primarily as a collecting and trading game; both mobile and desktop players accessed live maps (of different sizes, depending on the screen interface) and collaborated with each other to accrue points by collecting virtual items. In games such as Mogi both actual and ‘as-if’ mobility is fundamental to our experience of hybrid space – the term ‘mobility’ must account for the physical macro-movement of the pedestrian body which can be traced geospatially on the gamer’s desktop computer, the micro-movements and motor coordination required of the mobile player, and the virtual movement and exchange of objects and creatures ‘into’ the gamers’ mobile devices and their passage through the hybrid game-space. Location-based mobile phone games thus potentially work to seamlessly combine the corporeal schematics of actual and virtual worlds as they are actively negotiated on-the-move, effectively creating a hybrid mode of being where the boundary between game and real life
collapses. As Follet (2008) points out, location-based and hybrid reality games are part of the a more general trend toward the convergence between real and virtual into a “new hybrid experience” that has been enabled by the mobile geospatial web.

Metaphors of the mobile

In other work I have suggested that the kind of ontological and ‘containment’ metaphors we use to describe the space of screen-based game-play – in particular, the magic circle, and tropologies of the screen as a fixed window or frame – are ill-suited as descriptors for the complex layering of material and virtual contexts specific to mobile location-based and hybrid reality gaming. As Nieuwdorp (2005) argues, the conventional notion of the screen as the interface or ‘translucent membrane’ that translates player’s actions and movements into virtual space is challenged by mobile networked and pervasive gaming practices. In a phenomenological sense, our corporeal attachment to the portable and mobile screen is not that of larger televisual screens of console and desktop games; it is intimate, up close, peripatetic, and in-the-world, while the activity of location-based and hybrid reality gaming involves the negotiation and manipulation of a networked gamespace across players through both the mobile screen-window and the online computer screen, setting up complex interlacing of co-presence (with other non-players in the urban space) and distributed presence (with other gamers in the network). Location-based games effectively create a hybridised mode of communication that cuts across mediated and co-present or face-to-face contexts. Indeed, in the case of mobile gaming the ‘windows’ do not frame a singular game-world, but are multiple and cross-platform, coalescing online and mobile screens, and effecting increasingly hybridized, networked, distributed and mediated modalities of interaction.

Thus, we need to expand our understanding of the interface to include the digital, social and spatial environments, the material and the virtual, embodied mobility and augmented agency, and the affordances of both technology and urban cityscape. In answer to this need, Copier (2009) proposes a different metaphor – that of the network. She states:

> ... the concept of the magic circle refers to a pre-existing artificiality of the game space that, combined with the strong metaphor, creates a dichotomy between the real and the imaginary which hides the ambiguity, variability, and complexity of actual games and play. I propose to withdraw from the magic circle and suggest we shift our focus from a study of games in culture to study of game-play as one of the play elements and produces of culture. A network perspective allows us to understand how every game and game experience is negotiated spatially, temporally and socially (Copier, 2009: 169).

For Copier, the network trope allows us to think about pathways of communicative action, social networking, nodes of collective practices, and the ambiguities and negotiations of gameplay and gamespaces. The network metaphor could be described as a type of ‘open’ and mutable container, but is perhaps more aptly characterised, in Lakoff and Johnson’s terms (1986), as a ‘conduit metaphor’, emphasising movement, transference, exchange, connection, relationality, coalescence and divergence, and most significantly, capturing how gaming practices are becoming increasingly intertwined with social interactivity, cultural contexts and subjectivities in everyday life. As a number of theorists have commented (Taylor, 2006; Mäyrä, 2006; Pearce, 2009; Licoppe and Inada, 2006) the digital and material network ecologies of gameplay – from multiplayer online gaming to mobile location-based and pervasive gaming – are inextricable from the patterns and mobilities of daily activity; that is, for many players, it is impossible to say where their online identity or avatar ends and their RL persona begins, where social interaction stops and gameplay starts, or how game space can be ‘marked off’ from urban or city space. The network perspective – where gameplay is not confined to a
‘magic circle’ and its more scripted somatic involvements, but rather is embedded in daily life and quotidian embodiment – also enables a critical and fluid understanding of the dynamic ‘play element’ of culture. That is, mobile gaming can be situated within a broader cultural shift towards ludic or game-like practices, what Frans Mäyrä (2008) see as the proliferation of ‘playing fields’ emerging from our use of communication devices and social utilities, and Raessens refers to as ‘the ludification of culture’, wherein the ‘user’ becomes more aptly described as a ‘player’, and games are not in culture, but producers of culture (Copier, 2009: 162, 167).

In this context, it is argued that the proliferation of Web 2.0 applications and services – characterised by dynamic interactivity, social software and the exponential growth of user-generated content – is generating a type of media practice that is inherently playful, collaborative, shared, and often comprises the re-use and remixing of existing media content. The playful or ludic attitude is at the core of a ‘remix culture’ characterised by ‘small media’ production and intervention; that is, the ‘range of newly empowered synthetic cultural and technological practices – hacking, cracking, poaching, sampling, mixing, appropriating, misusing, reverse engineering, and others’ (Nideffer, 2007: 213) effectively blurs the boundaries between production and consumption and demands that we rethink new media practices not in terms of the old ‘closed’ dichotomy of user and producer, player and designer, but in terms of a flexible, mutable – and often irreverent and playful – open and ambiguous dynamic. In this light, the network metaphor seems an apposite fit as a way to describe the emergent practices and human-technology relations particular to mobile location-based and hybrid reality gaming, and indeed new media engagement more broadly.

There is no doubting the transformative potential of mobile media practices, and even perhaps of mobile gameplay more specifically, in contemporary new media cultures. As a number of theorists of mobile culture have noted, the iPhone has in many ways set the standard as the mobile exemplar of the ‘ludic turn’, a conduit and container of numerous playful and often user-generated applications. Moreover, it has also worked to escalate the popularity of location-based services and games, and thus the mergence of online and offline, physical and digital, co-presence and telepresence. In his exposition on contextual gaming, Mäyrä comments that much of the nascent potential both for gaming and digital media ‘are rooted in this increasingly tighter intertwining of the physical and digital realities in the social sphere of significance’ (2008). As I have suggested, location based games and applications create a network or connective sensibility in which the mobile phone, web, community of participants and built environment coalesce. Such practices work to seamlessly combine the corporeal schematics of actual and virtual worlds as they are actively negotiated on-the-move, effectively creating a hybrid mode of being where the boundary between imaginary and real life collapses, and the containment attributes of both screen and game spaces are effectively disassembled.

Notes

3. Interestingly, Jenkins documents how this dynamic process of convergence was predicted by Ithiel de Sola Pool in 1983 (Jenkins, 2006: 10).
4. Indeed, the iPhone has been touted as the Wii of mobile gaming, and as a device that competes with the Nintendo DS and PSP. See Steven Johnson, “Games and the iPhone”, stevenberlinjohnson.com (6 March 2008) http://www.stevenberlinjohnson.com/2008/03/games-an-the-i.html.

6. It is worth noting here that from a phenomenological perspective, all vision is tactile vision; as Merleau-Ponty would remind us, there is no essential or ontic difference between vision and television, between touching and seeing; looking, tasting, smelling and hearing are all variants of “handling” the world. Indeed, palpating with the eyes — a prehension, a prise — literally translates as holding (Merleau-Ponty, 1964: 133).

7. Though it is not possible to expand on the following point here, the ‘corporeal turn’ in cultural and post-semiotic theory, which has incorporated the work of Merleau-Ponty and other phenomenologists, has been used effectively as a counter-argument against those who claim that online interaction is ‘disembodied’. In this context, the oppositional relation between virtual and locative spaces would be moot, since both dedicated internet use and use of context-aware mobile devices would be considered different ways of being embodied, each educating distinctive corporeal schematics.

8. Geocaching is “a worldwide GPS treasure hunt game that is played in over 200 countries… The game players hide geocache containers in public areas, marking them with GPS coordinates. Players use their mobile devices (from GPS receivers to iPhones) to track down the container, sign the log, and leave tradable and trackable items in the cache” (Farman, 2009).

References

West, Joel and Michael Mace (2010) 'Browsing as the killer app: Explaining the rapid success of Apple's iPhone', Telecommunications Policy 34(5-6): 270-286.